УДК 547:541.124

ХИМИЯ

А. С. ГУДКОВА, К. УТЕНИЯЗОВ, академик О. А. РЕУТОВ

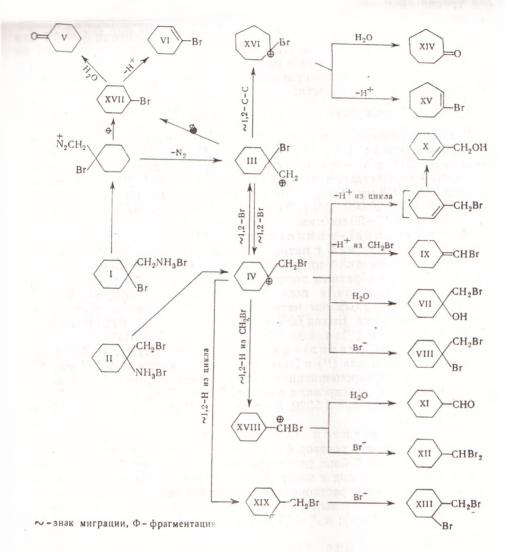
ДЕЗАМИНИРОВАНИЕ ГИДРОБРОМИДОВ 1-АМИНОМЕТИЛ-1-БРОМ-И 1-АМИНО-1-(БРОММЕТИЛ)-ЦИКЛОГЕКСАНОВ

Методом г.ж.х. исследовано дезаминирование азотистой кислотой при 50° гидробромидов 1-аминометил-1-бромциклогексана (I) и 1-амино-1-(бромметил)-циклогексана (II). Дезаминирование протекает с промежуточным образованием 1-бромциклогексилметил-катиона (III) и 1-(бром-

Таблица 1 Дезаминирование гидробромида 1-аминометил-1-бромциклогексана (I)

Тип перегруппировки	Тип реанции	Продукты реакция	Выход, %
	Φ*	V. Циклогексанон	1,4
1,2-Миграция брома	S_N	VI. 1-Бром-1-циклогексен (VII. 1-Бромметил-1-циклогексанол (VIII. 1-Бром-1-бромметилцикло-	1,6 47 14,4
Последовательно 1,2-ми-	E, S_N	Стексан IX. (Бромметилен)-циклогексан X. 1-Оксиметил-1-циклогексен	1.7 3.5
грации брома и гид- рид-иона из боковой цепи из цикла	$S_N \ S_N$	{XI. Циклогексилформальдегид \XII. (Дибромметил)-циклогексан XIII. 1-Бром-2-бромметилцикло-	1,7 2,6 8,2
Перегруппировка Демьянова	$\mathop{E}\limits_{E}^{S_{N}}$	гексан XIV. Циклогептанон XV. 1-Бром-1-циклогептен	12,8 5,1

^{*} Ф — фрагментация.


Таблица 2

Дезаминирование гидробромида 1-амино-1-(бромметил)-циклогексана (II)

Тип перегруппировки	Тип реакции	Продукты реакции	Выход, %
1,2-Миграция брома Последовательно 1,2-ми- грация брома и пере- группировка Демьяно- ва	$egin{aligned} S_N \ E, S_N \ \Phi \ S_N \ E \end{aligned}$	VII. 1-Бромметил-1-циклогексанол VIII. 1-Бром-1-бромметилциклогексан IX. (Бромметилен)-циклогексан X. 1-Оксиметил-1-циклогексен ∫V. Циклогексанон ↓VI. 1-Бром-1-циклогексен XIV. Циклогеитанон XV. 1-Бром-1-циклогентен	41,2 4,1 9,8 9 3,5 2 6,6 7,1
1,2-миграция гидрид- иона из боковой цепи из цикла	S_N S_N	XI. Циклогексилформальдегид XII. (Дибромметил)-циклогексан XIII. 1-Бром-2-бромметилцикло- гексан	1,4 4,7 10,6

метил)-циклогексил-катиона (IV) соответственно, и в конечном результате приводит к сложной смеси продуктов реакции (см. табл. 1 и 2). Смеси состоят из одних и тех же веществ, но количественный состав разный, что, по-видимому, определяется строением карбониевых ионов III и IV. Нам представляется наиболее вероятной схема образования соединений V—XV:

C хема образования продуктов реакции V-XV при дезаминировании аминов I-II

Из данных табл. 1 и схемы видно, что при стабилизации первичного карбониевого иона III превалируют процессы, связанные с перегруппировками и превращением в более стабильные вторичные или третичные органические катионы. При 1,2-миграции брома образуется третичный карбониевый ион IV, при перегруппировке Демьянова— вторичный ион XVI. Далее по доле вклада располагаются реакции без перегруппировок и фрагментация. Следует отметить, что фрагментация, по-видимому, протекает с промежуточным образованием вторичного карбокатиона XVII. На первый взгляд трудно объяснить протекание вторичных процессов (последовательные 1,2-миграции брома и гидрид-иона), поскольку они связа-

ны с превращением третичного иона IV в первичный катион XVIII или вторичный ион XIX. Это случай так называемых эндотермических перегруппировок. Однако имеются данные (¹) о недостаточной стабильности циклогексильных катионов вследствие стерических факторов. Придерживаясь этой точки эрения, можно понять порядок реакционных процессов при стабилизации третичного карбониевого иона IV (см. табл. 2). В данном случае, хотя и преобладают процессы без перегруппировок, но общая доля миграций также значительна. Из процессов перегруппировок наиболее трудно объяснима 1,2-миграция брома с образованием первичного катиона III. Вероятно, это связано с дальнейшими необратимыми превращениями, сопровождающимися фрагментацией в соединении V — VI или перегруппировкой Демьянова (XIV — XV). Сравнивая между собой по степени вклада конкурирующие процессы перегруппировок, участвующие группы и заместители можно расположить в ряд по убыванию относительной миграционной способности:

Br>C-C (растирение цикла) $>H^-$ (из цикла) $>H^-$ (из боковой цепи).

Исходные соединения и некоторые эталоны для г.ж.х. получены по известным методикам: I (²), II (³), VI (⁴), VII (⁵), VIII (⁶), X (⁻), XI (⁶). Соединения XIV и V — промышленные продукты. Г.ж.х. анализ реакционных смесей осуществляли на хроматографе ЛХМ 8М, ДПИ. Стеклянная колонка 240 см \times 3 мм. Твердый носитель — целит 545 (80—100 меш), жидкая фаза — ПЭГ 20 000 (5%). Температура колонки 100°, скорость газаносителя (азот) 45—50 мл/мин.

(Бромметилен) - циклогексан (IX). К раствору метилата натрия, полученному из 8 г натрия в 100 мл метанола, прибавлено 25 г (0,1 г-мол) 1-бромметил-1-нитроциклогексана (°). Реакционную смесь нагревали 1,5 часа с обратным холодильником, затем разбавили водой, органический слой отделили, а водный — экстрагировали эфиром. Эфирные вытяжки сушили сульфатом натрия и после упаривания растворителя перегоняли в вакууме. Выход 50% от теории. Т. кип. 65—67° (10 мм); $n_{\rm D}^{\rm 20}$ 1,5150. Лит. данные (10): т. кип. 62—64° (5 мм); $n_{\rm D}^{\rm 20}$ 1,5143.

1-Б р о м-2-(б р о м м е т и л) - ц и к л о г е к с а н (XIII). К 4 г 1-оксиметил-2-циклогексанола (11) в 20 мл пентана прибавили 11,4 г (4 мл) РВг $_{3}$ при охлаждении и перемешивании, затем нагревали 2 часа. Смесь вылили в воду, трижды экстрагировали эфиром. Выход 75% от теории. Т. кип. $102-103^{\circ}$ (10 мм); n_{D}^{20} 1,5320. Лит. данные (12): т. кип. 115° (15 мм); n_{D}^{25} 1,5370.

1-Б р о м ц и к л о г е п т е н (XV). К 19 г РВг₅ при охлаждении и перемешивании прибавили раствор 4 г циклогентанона в 5 мл пентана. Смесь нагревали на водяной бане до прекращения выделения бромистого водорода, затем вылили в лед и экстрагировали эфиром. После высушивания экстракта и испарения растворителя остаток без дальнейшей очистки подвергли обработке спиртовым раствором щелочи. Выход 40% от теории. Т. кип. $77-79^{\circ}$ (22 мм); n_D^{20} 1,5326. Лит. данные (13): т. кип. $66,5-67,5^{\circ}$ (13 мм); 191° (760 мм).

Дезаминирование гидробромидов 1-аминометил-1-бромциклогексана и 1-амино-1-(бромметил)-циклогексана. Для дезаминирования брали по 3 навески: 1 г амина (1 или 11) растворяли в 5 мл дистиллированной воды и нагревали в колбочке с обратным холодильником до 50°, затем прибавляли 0,5 мл 48% бромистоводородной кислоты и 0,25 г нитрита натрия. Реакционную смесь выдерживали 3 часа при 50°, затем охлаждали и экстрагировали эфиром. Экстракт сушили сульфатом магния, упаривали до 1 мл и подвергали г.ж.х. анализу.

Московский государственный университет им. М. В. Ломоносова

Поступило 26 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. G. Тгаупhаm, O. S. Pascual, Tetrahedron, 7, 169 (1959). ² O. А. Реутов, А. С. Гудковайдр., ДАН, 202, 101 (1972). ² O. А. Реутов, А. С. Гудковайдр., ДАН, 201, 1369 (1971). ⁴ H. Goering, L. L. Sims, J. Am. Chem. Soc., 79, 6274 (1957). ⁵ A. Sisty, J. Org. Chem., 33, 3954 (1968). ⁶ J. Wolinsky, R. Novak, K. Erickson, J. Org. Chem., 34, 494 (1969). ⁷ B. Lythgoe, S. Trippet, J. C. Watkins, J. Chem. Soc., 1956, 4060. ⁸ D. Jerchel, H. Fisher, M. Kracht, Ann., 575, 162 (1951). ⁹ M. S. Heller, R. A. Smiley, J. Org. Chem., 23, 772 (1958). ¹⁰ J. Wolinsky, K. Erickson, J. Org. Chem., 30, 2211 (1965). ¹¹ A. Blomquist, J. Wolinsky, J. Am. Chem. Soc., 79, 6028 (1957). ¹² J. Colongne, H. Robert, Bull. Fr., 1960, 463. ¹³ E. Kohler, M. Tishler et al., J. Am. Chem. Soc., 61, 1059 (1939).