УДК 519.95

КИБЕРНЕТИКА И ТЕОРИЯ РЕГУЛИРОВАНИЯ

в. п. диденко, н. н. козлов

О РЕГУЛЯРИЗАЦИИ НЕКОТОРЫХ НЕКОРРЕКТНЫХ ЗАДАЧ ТЕХНИЧЕСКОЙ КИБЕРНЕТИКИ

(Представлено академиком В. М. Глушковым 23 II 1973)

1. Многие задачи автоматического управления приводят к решению уравнений вида

$$Au = \int_{0}^{\tau} R(t,\tau)u(\tau)d\tau = f(t), \quad 0 \le t \le T,$$
(1)

где классом допустимых решений является класс обобщенных функций вида

$$u(t) = \sum_{i=0}^{h} c_i \delta^{(i)} + \varphi(t), \quad c_i = \text{const}$$

 $(\delta^{(i)} -$ производные i-го порядка от функций Дирака, $\phi(t) -$ гладкая

функция) (1).

Обозначим через W_2^0 пространство интегрируемых с квадратом функций, через W_2^{-l} — негативное пространство, сопряженное пространству Соболева W_2^{-l} , l>0. Из теорем вложения для одной независимой переменной следует, что при $l>^1/2$ определены и входят в W_2^{-1} функции Дирака

и ее производные до (l-1)-го порядка включительно.

В работе (²) предложен метод регуляризации некорректных задач вида (1) в случае, когда u(t) из пространства с позитивной нормой. Если решение u(t) содержит в качестве слагаемых δ -функции Дирака и их производные, то вопрос о регуляризации уравнения (1) рассматривался в работе (³), где доказывается существование обобщенного решения уравнения $A^*Au=A^*f$, а приближение в метрике $\|u\|=(Au, Au)=(A^*Au, u)$ (скобки означают скалярное произведение в W_2 °) рассматривается как регуляризация задачи.

В настоящей заметке на основании использования изометрических операторов (4) рассматривается регуляризация задачи Au=f, где f— заданный, а u— искомый элементы, A— вполне непрерывный оператор из

 $W_2^{-l} = W_2^0$.

2. Рассмотрим интегральный оператор (1), который является вполне непрерывным из W_2^{-l} в W_2^0 , если

$$\int_{0}^{\tau} \|R(t,\tau)\|_{W_{2}^{1}}^{2} dt < \infty.$$

Далее для определенности l=1. Предположим, что существует решение \bar{u} уравнения (1) $\bar{u} \in W_{z}^{-1}$ и оно определено однозначно заданием совокупности точных исходных данных $\{A, f\}$.

Построим алгоритм для нахождения приближенного решения задачи (1), допускающий численную реализацию. По (4) вводим изометри-

ческие взаимно обратные операторы Δ и Δ^{-1} , полагая

$$\Delta u = -d^2 u/dt^2 + u, \quad du/dt \big|_{t=0} = du/dt \big|_{t=T} = 0,$$
 (2)

а Δ^{-1} — интегральный оператор с ядром G — функцией Грина выражения (2):

$$G(t,\tau) = \begin{cases} \frac{e^{\tau + e^{2}e^{-\tau}}}{2e^{2} - 2} (e^{t} + e^{-t}), & t \leq \tau, \\ \frac{e^{\tau + e^{-\tau}}}{2e^{2} - 2} (e^{t} + e^{2}e^{-t}), & t \geq \tau. \end{cases}$$
(3)

Оператор Δ переводит все W_2^4 на W_2^{-4} , оператор Δ^{-4} переводит W_2^{-4} на W_2^4 , причем

$$(u, v)_{w_2^{-1}} = (\Delta^{-1}u, v)_0 = (u, \Delta v)_0 = (\Delta^{-1}u, \Delta^{-1}v)_{w_2^{-1}},$$

$$(\varphi, \psi)_{w_2^{-1}} = (\Delta \varphi, \psi)_0 = (\varphi, \Delta \psi)_0 = (\Delta \varphi, \Delta \psi)_{w_2^{-1}},$$
(4)

где $u, v \in W_2^{-1}$; $\varphi, \psi \in W_2^{-1}$; $(u, \varphi)_0$ — билинейная форма, совпадающая при $u \in W_2^0$, со скалярным произведением в W_2^0 , скобки $(\cdot, \cdot)_{w_2^{-1}}, (\cdot, \cdot)_{w_2^{-1}}$ означают скалярное произведение в соответствующих пространствах.

3. Рассмотрим по Тихонову сглаживающий параметрический функционал

$$M^{\alpha}(u) = ||Au - f||_{W_{2}}^{2} + \alpha \int_{0}^{T} \int_{0}^{T} G(t, \tau) (u(t) - u_{0}(t)) (u(\tau) - u_{0}(\tau)) dt d\tau, \quad (5)$$

где $u \in W_2^{-1}$, u_0 — произвольный фиксированный элемент из W_2^{-1} , $\alpha > 0$ — параметр. Уравнением Эйлера для этого функционала является

$$A^*Au^{\alpha} + \alpha \Delta^{-1}u^{\alpha} = A^*f + \alpha \Delta^{-1}u_0. \tag{6}$$

Но рассмотрение далее по (2) не приводит к получению уравнения Фредгольма второго рода. Поэтому поступим следующим образом. Образуем для произвольного $z = W_2^{-1}$ и выражения (6) билинейную форму

$$(A^*Au^{\alpha}, z)_0 + \alpha (\Delta^{-1}u^{\alpha}, z)_0 = (A^*f, z)_0 + \alpha (\Delta^{-1}u_0, z)_0.$$
 (7)

Используя (4), для первого слагаемого из левой части (7) получаем

$$(A^*Au, z)_0 = (u, A^*Az)_0 = (\Delta^{-1}u, \Delta A^*Az)_0 = ((\Delta A^*A)^*\Delta^{-1}u, z)_0.$$

С учетом полученного и обозначая $\Delta^{-1}u^{\alpha} = v^{\alpha}$, перепишем (7) в форме

$$((\Delta A^*A)^*v^a, z)_0 + \alpha(v^a, z)_0 = (A^*f, z_0) + \alpha(\Delta^{-1}u_0, z)_0,$$

откуда

$$(\Delta A^*A)^*v^\alpha + \alpha v^\alpha = A^*f + \alpha \Delta^{-1}u_0 \tag{8}$$

в смысле W_2^4 . Оператор (ΔA^*A)* является вполне непрерывным из W_2^4 в W_2^4 . Действительно, вполне непрерывный оператор A действует из W_2^{-1} в W_2^0 , A^*- из W_2^0 в W_2^4 , A^*A- из W_2^{-1} в W_2^{-1} , ΔA^*A- из W_2^{-1} в W_2^{-1} . Оператор ΔA^*A вполне непрерывен, так как $\Delta-$ ограниченный оператор из W_2^4 в W_2^{-1} , откуда и следует вполне непрерывность оператора (ΔA^*A)*. Поэтому (8) является уравнением Фредгольма второго рода для каждого α .

Из (7) непосредственно следует, что однородное уравнение, соответствующее уравнению (8), имеет лишь тривиальное решение. Следовательно, существует единственная функция u^{α} , доставляющая минимум функционалу (5). Последовательность $\{v^{\alpha}\}$ определяет $\{u^{\alpha}\}$ по формуле $u^{\alpha} = \Delta v^{\alpha}$ и имеет место

$$\lim \|v^{\alpha} - \Delta^{-1} \overline{u}\|_{w}$$
, $-1 = \lim \|u^{\alpha} - \overline{u}\|_{w}$, $-1 = 0$, $\alpha \to 0$.

Таким образом, справедлива

Теорема 1. Нахождение минимизирующей последовательности $\{u^{\alpha}\}_{\alpha} > 0$, $\alpha \to 0$ для параметрического функционала (5) сводится к нахождению решений $\{v^{\alpha}\}_{\alpha} < 0$, $\alpha \to 0$, параметрического семейства уравнений Φ редгольма второго рода

$$\int_{0}^{T} \left[-\frac{d^{2}}{dt^{2}} R^{*}(t,\tau) + R^{*}(t,\tau) \right] v^{\alpha}(\tau) d\tau + \alpha v^{\alpha} =$$

$$= \int_{0}^{T} R(t,\tau) f(\tau) d\tau + \int_{0}^{T} G(t,\tau) u_{0}(\tau) d\tau, \tag{9}$$

где $R^*(t,\, au)=\int\limits_0^ au R(t,\,s)R(au,\,s)ds,\,G$ — определено в (3). Это уравнение для

любого фиксированного $\alpha>0$ и любого $f\in W_2^0$ имеет единственное решение $v^{\alpha}\in W_2^1$, причем, если взять последовательность гладких приближенных решений $\{v_n^{\alpha}\}$, $\alpha>0$, $\alpha\to0$, $n\to\infty$ (например, v_n^{α} дважды непрерывно дифференцируемы), уравнения (9), то $u_n^{\alpha}=\Delta v_n^{\alpha}$ образует минимизирующую последовательность для параметрического функционала (5).

То обстоятельство, что приближенные решения v_n^a дважды непрерывно дифференцируемы, упрощает задачу нахождения последовательности $u_n^a = \Delta v_n^a$, которая и является регуляризированным семейством приближенных решений задачи (1).

Аналогично находится регуляризация задачи (1) при приближенных

исходных данных.

В общем случае, когда решение u уравнения (1) принадлежит пространству W_2^{-l} (A — вполне непрерывный оператор, не обязательно интегральный), схема рассуждений остается прежней, если в качестве Δ использовать изометрический оператор, переводящий все W_2^l на W_2^{-l} , а в качестве Δ^{-1} — оператор, переводящий все W_2^{-l} на W_2^{-l} ; тогда имеет место

Теорема 2. Пусть Au=f, где u-uскомая, f-заданная функции, определенные в некоторой ограниченной n-мерной области, A-вполне непрерывный оператор из W_2^{-l} в W_2^l ; тогда нахождение минимизирующей последовательности для параметрического функционала

$$M^{\alpha}(u) = ||Au - f||_{w_{2}^{0}}^{2} + \alpha ||u - u_{0}||_{w_{2}^{-1}}^{2}, \tag{10}$$

где u_0 — произвольный фиксированный элемент из W_2^{-1} , эквивалентно нахождению решений v^a , $\alpha > 0$, $\alpha \to 0$, параметрического семейства уравнений

$$(\Delta A^*A)^*v^{\alpha} + \alpha v^{\alpha} = A^*f + \alpha \Delta^{-1}u_0, \tag{11}$$

 $e\partial e\ (\Delta A^*A)^*-$ вполне непрерывный оператор из $W_2^{\ l}$ в $W_2^{\ l}$.

Уравнение (11) для любого фиксированного $\alpha>0$ и любого $f\equiv W_2^0$ имеет единственное решение $v^\alpha\equiv W_2^{l}$, причем, если взять последовательность гладких приближенных решений $\{v_n^{\alpha}\},\ \alpha>0,\ \alpha\to0,\ n\to\infty$ (например, $v_n^{\alpha}\equiv W_2^{2l}$), уравнения (11), то $u_n^{\alpha}\equiv \Delta v_n^{\alpha}$ образует минимизирующую последовательность для параметрического функционала (10).

Поступило 20 II 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Теория автоматического регулирования, под ред. В. В. Солодовникова, М., 1969. ² А. Н. Тихонов, ДАН, 151, № 3, 501 (1963). ³ Ю. П. Леонов, ДАН, 206, № 1, 37 (1972). ⁴ Ю. М. Березанский, Разложение по собственным функциям самосопряженных операторов, Киев, 1965.