УДК 517.537

MATEMATUKA

Академик АН АзербССР И. И. ИБРАГИМОВ, С. С. ЛИНЧУК, н. и. нагнибида

О БАЗИСАХ В АНАЛИТИЧЕСКОМ ПРОСТРАНСТВЕ, БЛИЗКИХ К СТЕПЕННЫМ

В этой заметке находятся условия квазистепенной базисности в прост-

ранстве
$$A_r$$
, $0 < r < \infty$, системы функций $\{z^n f_n(\beta_n z)\}$, где $f_n(z) = \sum_{n=0}^{\infty} a_k^{(n)} z^n \in A_{Rn}$,

 $\{\beta_n\}$ — некоторая последовательность комплексных $r_0 = \inf(R_n/|\beta_n|) > 0$. Очевидно, рассматриваемая система может быть квазистепенным базисом лишь в тех A_r , для которых $r \leq r_0$. Для дальнейшего нам понадобится следующая

 Π емма $^{(1)}$. Пусть оператор L отображает некоторое пространство $A_{\mathbb{R}}$

в себя и его матрица $[l_{k, n}]_{k, n=0}^{\infty}$ удовлетворяет условиям: 1) $l_{k, k}=1, k\geqslant 0$, а $l_{k, n}=0$ при k< n;

2) для всякого ρ , $\rho < R$,

$$\overline{\lim}_{n\to\infty} \sum_{k=n+1}^{\infty} |l_{k,n}| \rho^{k-n} < 1.$$
 (1)

Tог $\partial a\; L$ является изоморфизмом $A_{\scriptscriptstyle R}$ на себя.

Найдем условия, при которых оператор Т, определяемый соотношеимкин

$$Tz^n = z^n f_n(\beta_n z) = \sum_{k=0}^{\infty} a_{k-n}^{(n)} \beta_n^{k-n} z^k, \quad n = 0, 1, ...,$$

может быть расширен до изоморфизма некоторого пространства $A_{\widetilde{r}}$ на $A_{ au}$. Матрица $[t_{k,n}]_{k,n=0}^{\infty}$ оператора T в степенном базисе $\{z^n\}$ имеет вид $t_{k,n}=\begin{cases} 0, & k < n, \\ a_{k-n}^{(n)}\beta_n^{k-n}, & k \geqslant n. \end{cases}$

$$t_{k,n} = \begin{cases} 0, & k < n, \\ a_{k-n}^{(n)} \beta_n^{k-n}, & k \ge n. \end{cases}$$

Будем предполагать, что выполняются следующие условия (см. (²)):

$$a_0^{(n)} \neq 0, \quad n=0,1,\ldots, \quad \lim |a_0^{(n)}|^{1/n} = l \neq 0.$$
 (2)

Представим оператор T в виде $T=T_2T_1$, где T_1 и T_2 имеют соответственно матрицы

$$t_{k,n}^{(1)} = \begin{cases} 0, & k < n, \\ \left[a_{k-n}^{(n)}/a_0^{(k)}\right] \beta_n^{k-n}; & k \ge n; \end{cases} \quad t_{k,n}^{(2)} = \begin{cases} 0, & k \ne n, \\ a_0^{(n)}, & k = n. \end{cases}$$

m B силу (2) T_2 является изоморфизмом A_r^{\sim} на A_r , $\tilde{r} = l_r$. Поэтому, чтобы Tбыл изоморфизмом A_r на A_r , необходимо и достаточно, чтобы T_i был изоморфизмом пространства A_{r} на себя. В этом случае условие (1) для оператора T_1 принимает вид

$$\overline{\lim_{n\to\infty}}\sum_{k=1}^{\infty}\left(|a_{k}^{(n)}|/|a_{0}^{(k+n)}|\right)(|\beta_{n}|\rho)^{k}<1$$

для всякого ρ , $\rho < \tilde{r}$.

$$\varphi_n(\sigma) = \sum_{k=1}^{n} (|a_k^{(n)}|/|a_0^{(k+n)}|) l^k \sigma^k, \quad n=0,1,\ldots$$

Легко проверить, что $\varphi_n(\sigma) = A_{Rn}$. Кроме того, для каждой функции $\varphi_n(\sigma)$ на $(0, R_n)$ имеем, очевидно, $\varphi_n(0) = 0$, $\varphi_n(\sigma)$ неубывающая и выпукла вниз. Будем рассматривать также $\varphi_n(R_n) = \lim_{\sigma \to R_n = 0} \varphi_n(\sigma)$ и уравнения $\varphi_n(\sigma) = 1$ на

интервале $(0, R_n)$, $n \ge 0$. В случае $\varphi_n(R_n) > 1$ уравнение $\varphi_n(\sigma) = 1$ имеет на $(0, R_n)$ единственное решение, обозначим его через σ_n . Если же $\varphi_n(R_n) \le 1$, то уравнение $\varphi_n(\sigma) = 1$ на $(0, R_n)$ решения не имеет, в этом случае полагаем $\sigma_n = R_n$.

Будем предполагать еще, что $r_i = \lim_{n \to \infty} (\sigma_n / |\beta_n|) > 0$, и докажем, что при

сделанных предположениях оператор T_1 является изоморфизмом каждого пространства A_r^{\sim} на себя при $\tilde{r} \leqslant l \cdot \min\{r_0, r_1\}$.

Если $\min\{r_0, r_1\} = r_0 < r_1$, то в этом случае для всякого $\rho < lr_0$ и для $n \ge n_0$ (n_0 такое, что $\sigma_n / |\beta_n| \ge r_0$ при $n \ge n_0$) имеем

$$\sum_{k=1}^{\infty} \left[|a_{k}^{(k)}| / |a_{0}^{(k+n)}| \right] (|\beta_{n}|\rho)^{k} = \varphi_{n} \left(\frac{\rho}{lr_{0}} |\beta_{n}|r_{0} \right) \leq \frac{\rho}{lr_{0}} \varphi_{n}(\sigma_{n}) \leq \frac{\rho}{lr_{0}} < 1.$$

Следовательно,

$$\overline{\lim_{n\to\infty}}\sum_{k=1}^{\infty}\left[|a_k^{(n)}|/|a_0^{(k+n)}|\right](|\beta_n|\rho)^k<1$$

и остается лишь воспользоваться леммой.

Пусть теперь $\min\{r_0, r_1\} = r_1 \le r_0$. В этом случае для каждого $0 < q \le 1$ рассмотрим уравнения $\phi_n(\sigma) = q$ на $(0, R_n)$. Если уравнение $\phi_n(\sigma) = q$ имеет на $(0, R_n)$ решение, то обозначим его через $\sigma_n(q)$. В противном случае мы снова полагаем $\sigma_n(q) = R_n$.

Введем в рассмотрение функцию $r_i(q) = \lim_{n \to \infty} \left(\sigma_n(q) / |\beta_n| \right)$. В этих обо-

аначениях $r_1 = r_1(1)$. Функция $r_1(q)$, очевидно, является неубывающей на (0,1] и поэтому существует $\lim_{q\to 1-0} r_1(q)$. Покажем, что $\lim_{q\to 1-0} r_1(q) = r_1$. Дока-

вательство проведем для $r_1<+\infty$ (в случае $r_1=+\infty$ оно аналогично). С этой делью достаточно проверить, что для произвольного ε , $0<\varepsilon< r_1/2$, существуют такие $q_\varepsilon<1$ и n_0 , что $\sigma_n(q_\varepsilon)/|\beta_n|\geqslant r_1-2\varepsilon$, $n\geqslant n_0$. Положим $q_\varepsilon==(r_1-2\varepsilon)/(r_1-\varepsilon)$ и покажем, что в качестве n_0 можно взять такое (его существование очевидно), чтобы $\sigma_n(1)/|\beta_n|\geqslant r_1-\varepsilon$ при всех $n\geqslant n_0$. Действительно, если это не так, т. е. существует такое $N\geqslant n_0$, что $\sigma_N(q_\varepsilon)/|\beta_N|< r_1-2\varepsilon$, то, очевидно, *

$$q_{\varepsilon} = \varphi_{N}\left(\frac{\sigma_{N}(q_{\varepsilon})}{\sigma_{N}(1)}\sigma_{N}(1)\right) \leqslant \frac{\sigma_{N}(q_{\varepsilon})}{\sigma_{N}(1)}\varphi_{N}(\sigma_{N}(1)) \leqslant \frac{\sigma_{N}(q_{\varepsilon})}{\sigma_{N}(1)} < \frac{r_{1}-2\varepsilon}{r_{1}-\varepsilon},$$

а полученные неравенства приводят к противоречию. Следовательно,

$$r_{i}(q_{e}) = \underline{\lim_{n \to \infty}} \left[\sigma_{n}(q_{e}) / |\beta_{n}| \right] \geqslant r_{i} - 2\varepsilon$$

и, тем самым, $\lim_{q \to 1-0} r_i(q) = r_i$, что и требовалось показать.

^{*} Равенство $\sigma_N(q_e) = R_N$ невозможно, так как в противном случае было бы $r_1 - 2\varepsilon > R_N/|\beta_N| \geqslant r_0 \geqslant r_1$.

Берем теперь произвольное $\rho < lr_1$. Для него находим такое $q_0 < 1$, чтобы $r_1(q_0) = \lim_{n \to \infty} (\sigma_n(q_0)/|\beta_n|) > \rho/l$.

Пусть, далее, n_1 таково, что $\sigma_n(q_p)/\left|\beta_n\right|\!\!>\!\!\rho/l$ для всех $n\!\!>\!\!n_1$ или же $\left|\beta_n\right|\rho/l\!\!\leq\!\!\sigma_n(q_p)$. Тогда

$$\sum_{k=1}^{\infty} \frac{|a_k^{(n)}|}{|a_0^{(k+n)}|} (|\beta_n|\rho)^k = \varphi_n \left(\frac{|\beta_n|\rho}{l}\right) \leqslant \varphi_n(\sigma_n(q_\rho)) \leqslant q_\rho < 1, \quad n \geqslant n_1,$$

и поэтому

$$\overline{\lim_{n\to\infty}} \sum_{k=1}^{\infty} \frac{|a_k^{(n)}|}{|a_0^{(k+n)}|} (|\beta_n|\rho)^k \leq q_\rho < 1.$$

Таким образом, доказана Теорема 1. *Пусть*

$$f_n(z) = \sum_{k=1}^{\infty} a_k^{(n)} z^k \in A_{R_n}, \quad n=0,1,\ldots,$$

причем $a_0^{(n)} \neq 0$, $n=0, 1, \ldots, u \lim_{n \to \infty} |a_0^{(n)}|^{1/n} = l$, $a \{\beta_n\}$ — некоторая после-

довательность комплексных чисел. Пусть, далее, через σ_n обозначено решение на $(0, R_n)$ уравнения

$$\sum_{k=1}^{\infty} \frac{|a_k^{(n)}|}{|a_0^{(k+n)}|} \cdot l^k \sigma^k = 1,$$

если оно существует, и $\sigma_n = R_n$ в противном случае. Если, кроме того,

$$\min \{\inf (R_n/|\beta_n|), \lim_{n\to\infty} (\sigma_n/|\beta_n|)\} > 0,$$

то система функций $\{z^nf_n(eta_nz)\}$ образует квазистепенной базис в каждом A_r , где

 $r \leq \min \{\inf (R_n/|\beta_n|), \lim_{n \to \infty} (\sigma_n/|\beta_n|) \}.$

Пример. Как известно (3), система $\{1, z^n/(1-z^n)\}$ полна в A_i . Для нее $\sigma_0 = +\infty$, а $\sigma_n = 2^{-1/n}$, $n \ge 1$. Следовательно, $\min\{1, \lim_{n \to \infty} 2^{-1/n}\} = 1$ и данная

система образует также квазистепенной базис в каждом A_r с $r \le 1$.

Если в процессе доказательства теоремы 1 диагональный изоморфизм T_2 выделить в соответствующем представлении оператора T не слева, а справа, то, проведя аналогичные предыдущим рассуждения, мы убеждаемся в гом, что верна

Теорема 2. Пусть

$$f_{n}(z) = \sum_{k=0}^{\infty} a_{k}^{(n)} z^{k} \in A_{R_{n}}, \quad n = 0, 1, ...,$$

причем $a_0^{(n)} \neq 0$, $n = 0, 1, \ldots$, $u \lim_{n \to \infty} |a_0^{(n)}|^{1/n} = l$, $a \{\beta_n\}$ — некоторая последовательность комплексных чисел. Пусть σ_n — решение соответствующего уравнения $\sum_{k=1}^{\infty} (|a_k^{(n)}|/|a_0^{(n)}|) \sigma^k = 1$ на $(0, R_n)$, если оно существует, $u = R_n$ в противном случае. Если, кроме того,

$$\min \left\{ \inf \left(R_n / |\beta_n| \right), \quad \lim_{n \to \infty} \left(\sigma_n / |\beta_n| \right) \right\} > 0,$$

то система функций $\{z^nf_n(\beta_nz)\}$ образует квазистепенной базис в каждом A_τ , где

 $r \leq \min \left\{ \inf \frac{R_n}{|\beta_n|}, \lim_{n \to \infty} \frac{\sigma_n}{|\beta_n|} \right\}.$

Замечание 1. Из теоремы 1 и 2 видно, что если для системы функций $\{f_n(z)\}$ выполняются условия $a_0^{(n)}\neq 0,\ n=0,\ 1,\dots$ и $\lim_{z\to 0}\|a_0^{(n)}\|^{1/n}=l,$

то для произвольного R, $0 < R < \infty$, можно указать такую последовательность комплексных чисел $\{\beta_n\}$, что соответствующая система $\{z^nf_n(\beta_nz)\}$ будет квазистепенным базисом в каждом A_r с $r \le R$.

В том случае, когда $a_0^{(n)} = a \neq 0$, $n = 0, 1, \ldots$, теоремы 1 и 2 дают одинаковый результат, так как соответствующие функции $\varphi_n(\sigma)$, $n = 0, 1, \ldots$, для них совпадают. В общем же случае эти теоремы дают различные результаты.

Рассмотрим систему функций

$$\{f_{2n}(z) = z^{2n}(a+bz); f_{2n+1}^{(z)} = z^{2n+1}(a_1+b_1z)\},$$

где $aa_1\neq 0$, и положим $\delta=(|a_1|-|a|)(|b_1|-|b|)$. Тогда можно проверить, что если $\delta=0$, то теоремы 1 и 2 равносильны; если $\delta<0$, то теорема 1 дает лучший результат, чем теорема 2; если же $\delta>0$, то, наоборот, теорема 2 дает лучший результат, чем теорема 1.

Замечание 2. Если известны оценки о' снизу решений уравнений $\phi_n(\sigma) = 1$, т. е. $\sigma_n' \leq \sigma_n$, то теоремы 1 и 2 останутся верными, если в их формулировках σ_n заменить на σ_n' .

Из теоремы 1 и замечания 2 вытекает

Следствие 1. Пусть F(z) — целая функция, $F^{(\mu_s)}(0) = 0$, $s = 0, 1, \ldots$, $F^{(\nu_s)}(0) \neq 0$, $k = 0, 1, \ldots$, $u \lim_{k \to \infty} |F^{(\nu_k)}(0)|^{1/\nu_k} = 1$,

(здесь $\{\mu_s\} \cup \{\nu_k\} = \{n\}$). Тогда система $\{z^{\mu_s}\} \cup \{z^{\nu_k}F^{(\nu_k)}(\beta_k z)\}$ образует квазистепенной базис в каждом A_r , где $r \leq (\ln 2)/\overline{\lim} |\beta_k|$.

Отметим, что при $v_k \neq pk$ (p фиксированное натуральное) такая система исследовалась ранее на базисность в (4).

С помощью теоремы 2 доказывается

Следствие 2. Пусть
$$f_i(z) = \sum_{k=0}^{\infty} a_k^{(i)} z^k$$
, $i=1,\ldots,m,$ — фиксированные

функции из A_R , причем $f_i(0) \neq 0$, $1 \leq i \leq m$.

Тогда система $\{z^n\psi_n(z)\}$, где каждая функция $\psi_n(z)$ совпадает с одной из $f_i(z)$, $i=1,\ldots,m$, образует квазистепенной базис в каждом из A_r с $r\leq \min\{\sigma_1,\ldots,\sigma_m\}$; здесь σ_i- решение уравнения

$$\sum_{k=1}^{\infty} (|a_k^{(i)}|/|a_0^{(i)}|) \cdot \sigma^k = 1$$

на (0, R), если оно существует, и $\sigma_i = R$ в противном случае.

Институт математики и механики Академии наук АзербССР Баку Поступило 11 VI 1973

Черновицкий государственный университет

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ К. М. Фишман, Н. И. Нагнибида, Сиб. матем. журн., 6, 4, 944 (1965). ² В. И. Горгула, Н. И. Нагнибида, Укр. матем. журн., 24, 6, 820 (1972). ³ И. И. Ибрагимов, Методы интерполяции функций и некоторые их применения, «Наука», 1971, стр. 1. ⁴ И. И. Ибрагимов, Н. И. Нагнибида, ДАН, 206, № 6, 1290 (1972).