УДК 547.234'235.2'288.3

Б. В. ИОФФЕ, М. А. КУЗНЕЦОВ

ПОЛУЧЕНИЕ 3,4-ДИГИДРОФОРМАЗАНОВ ИЗ СОЛЕЙ ДИАЗЕНИЯ

(Представлено академиком И. Я. Постовским 20 VIII 1973)

Соли диазения (I) — соединения общей формулы $(RR'N=NH)X^{\circ}$ — известны сравнительно давно (¹), но изучены довольно мало и сведения о них ограничиваются несколькими реакциями (²-4). Значительный интерес представляет аналогия между 1,1-дизамещеными диазениевыми солями и солями диазония (II), на существование которой указывает образование красителей при окислении 1,1-диарилгидразинов хлорным железом или красной кровяной солью в присутствии ароматических аминов и фенолов ($^{5-7}$):

$$\begin{split} & \operatorname{Ph_2NNH_2} \xrightarrow{-2e^{\ominus}} [\operatorname{Ph_2N} = \operatorname{NH}] \xrightarrow{\operatorname{Ph_2NH}} [\operatorname{Ph_2N} - \operatorname{NH} - \underbrace{\hspace{1cm}} - \operatorname{NH} - \underbrace{\hspace{1cm}}] \xrightarrow{-2e^{\ominus}} \\ & \to \Big[\operatorname{Ph_2N} - \operatorname{N} = \underbrace{\hspace{1cm}} = \operatorname{NH} - \underbrace{\hspace{1cm}} + \operatorname{Ph_2N} = \operatorname{N} - \underbrace{\hspace{1cm}} - \operatorname{NH} - \underbrace{\hspace{1cm}} - \operatorname{NH} - \underbrace{\hspace{1cm}} \Big]. \end{split}$$

Нам представлялось интересным проследить эту аналогию на примере реакций сочетания с монозамещенными гидразонами. Известно (8), что при действии солей диазония на монозамещенные гидразоны альдегидов в щелочной среде получаются формазаны (III):

$$[ArN \equiv N] X^{\ominus} + RCH = N - NHR' \xrightarrow{\text{основание}} R - C \\ (II) \\ R = N - NHR' \\ (III)$$
(1)

Можно было ожидать, что в аналогичной реакции с диазениевыми солями получатся замещенные 1,2-дигидроформазаны — гидразидины $R'NH-N=CR-NH-NR_2''$.

Оказалось, что диалкилдиазениевые соли действительно легко вступают в реакцию с этилгидразонами альдегидов, но в результате нами были выделены не гидразидины, а изомерные им 3,4-дигидроформазаны (IVa-в):

$$[R_{2}'\overset{\oplus}{N}=NH]Br^{\ominus} + R-CH=N-NHEt \xrightarrow{\text{ochobahue}} R-\overset{2}{CH} \\ N=N-Et \\ NH-NR_{2}' \\ (IV) \\ a-R=CH_{3}, R'=CH_{3}; \delta-R=CH_{3}, R'=C_{2}H_{5}; b-R=C_{3}H_{7}, R'=CH_{3},$$

относящиеся к новому классу соединений, первый представитель которого, 3-метил-1,5-триэтил-3,4-дигидроформазан (IVб), недавно получен в нашей лаборатории из нитрогидроксиламината натрия $Na_2N_2O_3$ и солянокислого диэтиламина (9).

Физические свойства и параметры спектров п.м.р. 3,4-дигидроформазанов (IV а — в)

	IVa	IV6	IVB
Г. кип., °С (мм рт. ст.)	44,5-45,0(9)	50,2—50,7(5)	71,9-72,1(8)
d_4^{20}	0,8556	0,8516	0,8523
n_{D}^{20}	1,4319	1,4361	1,4374
MR_{D} эксп	43,71	52,90	52,98
$MR_{D\ \mathrm{Bыч} *}$	43,43	52,75	52,77
l _{max} , μμ (ε)	360 (30)	360 (41)	360 (37)

Химические сдвиги (δ) и константы спин-спинового взаимодействия (гц)

C_2H_5	1,25 т **, 3,73 кв	1,23 т, 3,71 кв	1,24 т, $3,75$ кв
NH	(7,4) 2,90 д (6,5)	3,02 c	(7,5) 2,96 д (6,8)
\mathbb{C}_3 — H	4,20 квинтет	4,14 кв (6,3)	4,13 кв (6,8)
\mathbf{R}	1,08 д (6,5)	1,09 д (6,3)	Мультиплеты
	-		$CH_{2}CH_{2}$ 1,1—1,68 CH_{3} 0,8—1,08
\mathbf{R}'	2.32 c	Система АА'Х3	2,29 с
	7.	$\delta_{\rm X} \ 0.95 \ { m T}, \ \delta_{\rm A} \ 2.55$, -
		$\delta_{\rm A'} 2,42 J_{\rm AX} 7,4$	
		$J_{A'X}7,2J_{AA'}12,4$	

0,5 моля гидрозона растворяли в 1,5 молях триэтиламина, служившего основанием, охлаждали смесью льда и соли до $-5 \div -10^{\circ}$ и осторожно добавляли по каплям свежеприготовленный раствор 0,5 моля 1,1-диалкилдиазенийбромида в 5-моляльной HBr. Затем смесь подщелачивали избытком 30% NaOH, отделяли верхний органический слой и сушили NaOH. Триэтиламин отгоняли на роторном испарителе при температуре бани до 45°, а остаток перегоняли в вакууме на колонке.

Из этилгидразона ацетальдегида и 1,1-диэтилдиазенийбромида с выходом 39% получен 3-метил-1,5,5-триэтил-3,4-дигидроформазан (IVб). Тождественность этого соединения с препаратом, описанным ранее (9), доказана совпадением физических констант, времен удерживания при газохроматографическом анализе на двух насадках различной полярности *, спектрами п.м.р., у.-ф. спектрами, а также полным совпадением и.-к. спектров на всем интервале сканирования (700-4000 см⁻¹).

Из 1.1-диметилдиазенийбромида и этилгидразонов ацетальдегида и масляного альдегида получены, соответственно, 3,5,5-триметил-1-этил-3,4дигидроформазан (IVa) (выход 37%) и 5,5-диметил-1-этил-3-пропил-3,4дигидроформазан (IVв) (36 %). Константы препаратов приведены в табл. 1. Строение полученных соединений полностью подтверждается их и.-к., у.-ф. спектрами и спектрами п.м.р. (см. табл. 1).

По данным г.ж.х. реакционных смесей, аналитический выход 3,4-дигидроформазанов составляет 60-70%. Побочными продуктами реакции являются диалкилгидразоны, получающиеся, по-видимому, при разложении пигипрофармазанов кислотой, содержащейся в вводимом в реакцию

^{*} По связевым рефракциям Фогеля. ** Сокращения: с — синглет, д — дублет, т — триплет, кв — квартет.

Тазохроматографический анализ проводился в описанных ранее условиях (9). Дополнительно использовалась насадка из 7% смеси полиэтиленгликольоксида с 1,5% полиэтиленполиамина на Целите-545 (60-80 меш), предварительно обработанном спиртовым КОН.

растворе соли диазения, и тетразены — обычные продукты нейтрализации солей диазения. Смесь содержит также несколько процентов непрореаги-

ровавшего моноалкилгидразона (пропорционально тетразену).

(диэтиламин, №ОН, №2СОз. При использовании других оснований СаСОз и диметилформамид) выходы падают, хотя применение диэтиламина и NaOH еще допустимо. Повышение температуры резко снижает выход продукта, а при обратном порядке смешения реагентов его не получается вовсе. Последнее, скорее всего, связано с крайней чувствительностью 3.4-дигидроформазанов к действию кислот.

При реакции 1,1-диметилдиазенийбромида с этилгидразоном ацетона по приведенной методике соответствующий 3,4-дигидроформазан обнаружен не был. Все полученные 3,4-дигидроформазаны представляют собой желтые подвижные жидкости со своеобразным, не очень сильным запахом, медленно разлагающиеся при стоянии и очень быстро — под действием кислот. В их и.-к. спектрах характеристичной является полоса валентных колебаний N-H при 3250 см $^{-1}$. Полосы валентных колебаний связи N=Nв районе 1600 см-1 не обнаруживается, как и следовало ожидать для транс-

конфигурации азогруппы.

В у.-ф. спектрах полученных соединений присутствует полоса $n-\pi^*$ перехода малой интенсивности при 360 мм. Таким же поглощением характеризуется группа N=N в транс- α -азоспиртах R-N=N-CHOH-R' (3, 10), которые можно считать ближайшими аналогами 3,4-дигидроформазанов. Мадый коэффициент экстинкции позволяет предположить, что в 3,4-дигидроформазанах группа N=N присутствует в транс-конфигурации, а пониженная частота валентных колебаний N-H свидетельствует о существовании в них водородной связи. Оба эти признака подчеркивают аналогию между 3,4-дигидроформазанами и транс-α-азоспиртами.

В спектрах п.м.р. 1-этил-3,4-дигидроформазанов (IVa — в) * сигналы 1-этильной группы расположены в тех же областях, что и у соответствующим образом замещенных транс-α-азоспиртов, однако дальнее спинспиновое взаимодействие через связь N=N, характерное для последних $(J\sim 2 \text{ гn})$ (10), 3,4-дигидроформазанов значительно слабее и в спектрах

п.м.р. не наблюдается.

Диссимметрия 3,4-дигидроформазанов (наличие оптически активного атома C3) проявляется в неэквивалентности метиленовых протонов этильных групп при N⁵ в спектре п.м.р. соединения (IVб), вызванной диастереотопностью этих протонов. В результате группа -N(CH₂CH₃)₂ имеет спектр вида AA'X₃. Любопытно, что диастереотопность метиленовых протонов этильной группы при N^i в спектрах п.м.р. веществ (IVa - в) не проявляется.

Для соединений (IVa, в) наблюдается спин-спиновое взаимодействие между протонами при C³ и N³. Это говорит о медленном обмене протонов NH (или его отсутствии), обусловленном, вероятно, внутримолекулярной водородной связью. Константа взаимодействия Н-С-N-Н практически равна константе взаимодействия H-C-C-H в группировке R-C3H, что приводит к увеличению мультиплетности сигнала Н-С3 на единицу; линии мультиплета уширены. Соответственно, сигнал NH расщеплен в дублет.

Но в спектре 3-метил-1,5,5-триэтил-3,4-дигидроформазана (IVб), это взаимодействие проявляется слабо и приводит дишь к сильному уширению

сигнала H-C³.

В одном из опытов по синтезу 3-метил-1,5,5-триэтил-3,4-дигидроформазана попытка отогнать триэтиламин из реакционной смеси при нормальном давлении неожиданно привела к разложению продукта. Выделение газа, состоявшего из этана и азота в соотношении, близком к эквимолекулярному, началось уже при температуре 65° и закончилось при 120°. Остаток представлял собой смесь диэтилгидразона ацетальдегида с при-

^{*} Спектры п.м.р. сняты на приборе «Varian HA-100D» при температуре $30-40^{\circ}$ для 30% растворов (IVa-в) в ССl₄.

месью триэтиламина. Таким образом, разложение шло по уравнению:

$$\begin{array}{c} N{=}N{-}Et \\ R{-}CH \longrightarrow RCH{=}N{-}NR_{2}' + C_{2}H_{\theta} + N_{2} \\ NH{-}NR_{2}' \end{array}$$

Вероятно, этим же процессом объясняется накапливание диалкилгидравонов и азота в препаратах 3,4-дигидроформазанов при стоянии при ком-

натной температуре.

Следует отметить, что чистые 3,4-дигидроформазаны выдерживают нагревание до более высокой температуры и могут перегоняться при 80—90° (температура масляной бани достигает 140°), но, возможно, что различные примеси, следы кислот, дефекты и активные центры стекла способны ускорять процесс распада, поэтому выделять и хранить эти вещества следует при возможно более низких температурах.

Описанный метод синтеза 3,4-дигидроформазанов из солей диазения дополняет предложенный ранее (9) и позволяет получать дигидроформа-

заны с любыми радикалами.

Получение 3,4-дигидроформазанов из солей диазения и моноалкилгидразонов альдегидов является веским доводом в пользу правильности сделанного ранее предположения о механизме образования 3,4-дигидроформазанов при реакции соли Анджели со вторичными аминами (°).

Ленинградский государственный университет им. А. А. Жданова

Поступило 26 VII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. R. McBride, H. W. Kruse, J. Am. Chem. Soc., 79, 572 (1957). ² D. M. Lemal, Aminonitrenes (1,1-Diazenes), in Nitrenes, N. Y., 1970. ³ S. Hönig, Helv. chim. acta, 54, 1721 (1971). ⁴ Б. В. Иоффе, М. А. Кузнецов, Усп. хим., 41, 241 (1972). ⁵ S. Hünig, Angew. Chem. Int. Ed., 1, 640 (1962). ⁶ S. Hünig, F. Bruhne, Ann. Chem., 667, 86 (1963). ⁷ S. Hünig, J. Chem. Ed., 46, 734 (1969). ⁶ Houben-Weyl, Methoden der organischen Chemie, 10 (3), 627 (1965). ⁹ Б. В. Иоффе, В. А. Чернышев, ДАН, 214, № 2 (1973). ¹⁰ G. Böttner, S. Hünig, Ber., 104, 1088 (1971).