УДК 513.83

MATEMATUKA

В. А. КАЛИНИН

ОБ АППРОКСИМАЦИОННЫХ РЕТРАКТАХ ДЛЯ КЛАССА БИКОМПАКТНЫХ ПРОСТРАНСТВ

(Представлено академиком П. С. Александровым 21 V 1973)

На класс бикомпактов обобщаются понятия абсолютного аппроксимационного ретракта и абсолютного аппроксимационного окрестностного ретракта, введенные в работах (1, 2) для компактов. Распространяется ряд теорем, доказанных для компактов, на бикомпактный случай. Рассматриваются связи введенных классов пространств с классами пространств, определенными Мардешичем в работе (3).

1. Пусть X— некоторое пространство и A— его подмножество. Под окрестностями множества A будем понимать его окрестности в пространстве X. В дальнейшем, если специально не оговорено другого, рассматриваемые пространства считаются бикомпактами, а отображения— непрерыв-

ными.

Определение 1. Пусть ω — открытое в X покрытие множества A. Отображение r_{ω} : $X \to A$ называется ω - ретракцией пространства X в A, если для любого a = A существует такое $V = \omega$, что a = V п $r_{\omega}(a) = V$, т. е. система пар $(a, r_{\omega}(a))$ вписана в покрытие ω .

Определение 2. A называется Ω - ретрактом пространства X, если для любого открытого в X покрытия ω множества A существует

 ω -ретракция пространства X в A.

Определение 3. Бикомпакт X называется абсолютным Ω - ретрактом, $X \equiv A\Omega R$, если при любом вложении $i: X \rightarrow Y$ в произвольный

бикомпакт Y образ iX является Ω -ретрактом пространства Y.

Пространства из определенного выше класса абсолютных Ω -ретрактов обладают некоторыми свойствами, аналогичными свойствам абсолютных ретрактов для класса бикомпактов.

T е о р е м а 1. X \in $A\Omega R$ тогда и только тогда, когда X гомеоморфно неко-

торому замкнутому Ω -ретракту некоторого тихоновского куба I^{r} .

Следующая теорема характеризует понятие абсолютного Ω-ретракта с

помощью продолжения отображений.

Теорема 2. Бикомпакт $Y \subseteq A\Omega R$ тогда и только тогда, когда для любого открытого покрытия ω пространства Y и для любого $f: A \rightarrow Y$, где A — замкнутое подмножество произвольного нормального пространства X, существует такое отображение $f_{\omega}: X \rightarrow Y$, что для любого $a \subseteq A$ существует такое $V \subseteq \omega$, что $f(a) \subseteq V$ и $f_{\omega}(a) \subseteq V$.

Для понятия Ω-ретракта верна транзитивность.

Теорема 3. Πy сть $X'' \Rightarrow X' \Rightarrow X$, где X является Ω -ретрактом пространства X', а X' является Ω -ретрактом пространства X''.

Tогда X есть Ω -ретракт пространства X''.

Следствие 1. Если естественным образом определить понятие абсолютного Ω -экстензора для бикомпактов, то это понятие будет эквивалентно понятию абсолютного Ω -ретракта.

Следствие 2. $X \in A\Omega R$ тогда и только тогда, когда X есть Ω -ретракт

некоторого АК-пространства.

Определение 4. А называется окрестностным Ω - ретрактом в смысле Ногуши пространства X (окрестностным Ω - ретрактом в смысле Клаппа), если для любого открытого в X покрытия ω множества A существует ω -ретракция некоторой окрестности OA множества A в A (существует окрестность $O_{\omega}A$ и ω -ретракция этой окрест-

 $\mathbf{H}\mathbf{O}$ СТИ \mathbf{B} A).

Определение 5. Бикомпакт X называется абсолютным окрестностным Ω -ретрактом в смысле Ногуши, $X \in AN\Omega R_N$ (абсолютным окрестностным Ω -ретрактом в смысле Клаппа, $X \in AN\Omega R_c$), если при любом вложении $i: X \to Y$ в произвольный бикомпакт Y образ iX является окрестностным Ω -ретрактом в смысле Ногуши пространства Y (окрестностным Ω -ретрактом в смысле Клаппа).

Ясно, что AR-пространства являются абсолютными Ω -ретрактами, ANR-пространства являются абсолютными окрестностными Ω -ретрактами в обо-

их смыслах и верны

Следствия. Если $X \in A\Omega R$, то $X \in AN\Omega R_N$ и $X \in AN\Omega R_C$; если $X \in A\Omega R_N$

 \in AN Ω R_N, τ o $X \in$ AN Ω R_C.

Замечание. Все приведенные выше теоремы и следствия, если их сформулировать соответствующим образом для обоих окрестностных случаев, также верны.

Теперь сформулируем теоремы произведения для рассматриваемых

пространств.

T е о р е м а 4. Пусть $X=\prod_{\alpha\in \mathfrak{Q}} X_{\alpha}$, где $\mathfrak{A}-$ произвольное множество индек-

сов. Тогда:

а) $X \in A\Omega R$ (AN ΩR_c) тогда и только тогда, когда $X_a \in A\Omega R$ (AN ΩR_c) для любого $\alpha \in \mathfrak{A}$.

б) $X \in AN\Omega R_N$ тогда и только тогда, когда $X_\alpha \in AN\Omega R_N$ для любого $\alpha \in \mathfrak{A}$ и $X_\alpha \in A\Omega R$ для почти всех $\alpha \in \mathfrak{A}$.

Следующая теорема утверждает возможность продолжения отображения с Ω -ретракта некоторого пространства на все это пространство.

Теорема 5. Всякое отображение $f: A \to Y$ любого Ω -ретракта A пространства X в $Y \in ANR$ имеет непрерывное продолжение ext $f: X \to Y$.

В конце первой части работы приведем две теоремы, которые позволяют строить примеры пространств, принадлежащих рассматриваемым классам. Пусть M — паракомпакт, 2^{M} — множество всех непустых бикомпактных подмножеств пространства M и X, $X_{\omega} {=} 2^{M}$.

Теорема 6. Если для любого открытого покрытия ω пространства M существуют $X_{\omega} \in A\Omega R$ (ANQRc) и такие непрерывные отображения $p_{\omega} \colon X_{\omega} \to X$ и $q_{\omega} \colon X \to X_{\omega}$, что системы пар $(x, p_{\omega}(x))$, где $x \in X_{\omega}$ и $(x, q_{\omega}(x))$, где $x \in X$, вписаны в покрытие ω , то $X \in A\Omega R$ (ANQRc).

Теорема 7. Пусть $X \subset I^r$; $X \in AN\Omega R_c$ тогда и только тогда, когда для любого открытого покрытия ω куба I^r существуют такие конечный полиэдр $P_ω \subset I^r$ и отображения $p_ω$: $P_ω \to X$ и $q_ω$: $X \to P_ω$, что системы пар $(y, p_ω(y))$ и $(x, q_ω(x))$, где $y \in P_ω$ и $x \in X$, вписаны в покрытие ω.

2. Вторая часть работы посвящена рассмотрению взаимоотношений понятий абсолютного Ω -ретракта, абсолютных окрестностных Ω -ретрактов в смысле Ногуши и Клаппа, с одной стороны, и понятий абсолютного шейпового ретракта и абсолютного окрестного шейпового ретракта, введенных Мардешичем (3), с другой стороны.

Теорема 8. Пусть $X \subseteq ANR$ и подмножество A является его Ω -ретрактом. Если X гомотопически тривиально над Y, то любое отображение f: $Y \rightarrow A$ гомотопно постоянному отображению в любой окрестности множе-

cтва A.

Везде дальше будем предполагать, что бикомпакт X лежит в некотором тихоновском кубе I^{τ} , где мощность τ равна wX. Таким образом, окрестности множества X — это его окрестности в I^{τ} .

Спедствие 3. Если Х∈АΩВ, то Х стягиваемо в любой своей окрест-

ности (в I^{τ}).

Следствие 4. Если $X = A\Omega R$, то для его окрестности U (в $I^{\mathfrak{r}}$) существует такая его окрестность $U_{\mathfrak{o}}$, которая стягиваема в $U_{\mathfrak{o}}$.

Мардешичем ((3), теоремы 4, 5)) было доказано следующее утверж-

дение.

Теорема. Пусть $X = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$ — некоторая ANR-система, ассоциированная с X. X является абсолютным шейповым ретрактом, $X \in ASR$, тогда и только тогда, когда для любого $\alpha \in A$ существует такое $\alpha' \geqslant \alpha$, $\alpha' \in A$,

что $p_{\alpha\alpha}$, гомотопно постоянному отображению, $p_{\alpha\alpha} \simeq 0$.

В (4) и (3) было показано, что для каждого бикомпакта X существует ANR-система $X=\{X_{\alpha},\,i_{\alpha\alpha'},\,A\}$, т. е. обратный спектр из ANR-пространств, ассоциированная с X, т. е. $X=\lim X$, где $X_{\alpha'}\subset X_{\alpha}$ при любых $\alpha'\geqslant\alpha$ из A, проекции $i_{\alpha\alpha'}$ — вложения, проекции $i_{\alpha}\colon X\to X_{\alpha}$ — также вложения и множество индексов A направлено и замкнуто-конечно, т. е. любое $\alpha\subseteq A$ имеет конечное число предшественников в A. Этот обратный спектр называется вложенной ANR-системой для бикомпакта X. Из построения вложенной ANR-системы следует, что каждое ANR-пространство X_{α} является окрестностью бикомпакта X (в I) и для любой окрестности U множества X (в I) существует такое $\alpha\subseteq A$, что $X_{\alpha}\subset U$. Отсюда, применяя следствие 4 и теорему Мардешича, имеем следующее утверждение.

T е о р е м а 9. Eсли X \in A Ω R, το X \in ASR.

Если X∈ANΩR_c, то верна обратная теорема.

Теорема 10. Eсли X \in ASR&AN Ω R $_{c}$, το X \in A Ω R.

Из теорем 9 и 10 получаем

Следствие 5. X \in $A\Omega R$ $to c \partial a$ u to n ько $to c \partial a$, $to c \partial a$ X \in ASR u X \in \in $AN\Omega R_c$.

Определение 6. Назовем $X \subset I^{\tau}$ слабым ретрактом, если существует такая окрестность U_0 , что для любой окрестности U существуют такие отображение $f_U \colon U_0 \to U$ и его окрестность W, что $f_U(x) = x$ для любого $x \in W$.

Определение 7. Бикомпакт $X \subset I^{\tau}$ называется подвижным, если для любой его окрестности U существует такая его окрестность V, что для любой его окрестности U' существует гомотопия $\varphi \colon V \times I \to U$, где $\varphi(x, 0) = x$ и $\varphi(x, 1) \in U'$ для любого $x \in V$.

Определение 8. Бикомпакт $X \subset I^{\tau}$ называется внутрение подвижным, если для любой его окрестности U существует такая его окрестность V и гомотопия $\phi: V \times I \to U$, что $\phi(x, 0) = x$ п $\phi(x, 1) \in X$ для любого

 $x \in V$.

Ясно, что из внутренней подвижности следует подвижность. Заметим, что определение 7 дословно повторяет определение подвижности Борсука для компактов (5), а определение 8— определение Богатого (6), который доказал для компактов теоремы, аналогичные теоремам 9 и 10 и следствиям 7 и 8.

Предложение 1. Определения 6, 7 и 8 не зависят от вложения пространства X в I^{τ} .

Предложение 2. Бикомпакт X подвижен тогда и только тогда, когда он подвижен в смысле Mардешича (7).

Предложение 3. Если $X = AN\Omega R_c$, то X внутренне подвижен. Предложение 4. Если $X = AN\Omega R_N$, то он есть слабый регракт.

Следствие 6. $X = AN\Omega R_N$ тогда и только тогда, когда $X = AN\Omega R_C$ и является слабым ретрактом.

Используя характеристику абсолютных окрестностных шейповых ретрактов ANSR, данную Мардешичем в (3), теорема 7, можно получить следующее утверждение.

Теорема 11. Если бикомпакт X внутренне подвижен и является слабым ретрактом, то $X \subseteq ANSR$.

В обратную сторону верна

T е о р е м а 12. Eсли X \in ANSR, то X подвижен и является слабым ретрактом.

Предложения 2, 3, 4, следствие 6 позволяют вывести также некоторые следствия из теорем 11 и 12.

Следствие 7. Eсли $X \in AN\Omega R_N$, то $X \in ANSR$.

Следствие 8. $X = AN\Omega R_N$ тогда и только тогда, когда $X = ANSR\&AN\Omega R_c$.

В заключение мне хочется выразить свою искреннюю благодарность проф. Ю. М. Смирнову за руководство этой работой.

Московский государственный университет им. М. В. Ломоносова

Поступило 21 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. Noguchi, Kodai Math. Seminar Reports, 1, 20 (1953). ² M. H. Clapp, Fund. Math. 70, 117 (1971). ³ S. Mardešić, Glashik Matematicki. 6, 1 (1971). ⁴ S. Mardešić, J. Segal, Fund. Math., 72, 41 (1971). ⁵ K. Borsuk, Fund. Math., 66, 137 (1969). ⁶ C. Богатый, Матем. сборн., 93, в. 1 (1974). ⁷ S. Mardešić, T. Segal, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 18, 649 (1970).