УДК 547.728.1 ХИМИЯ

Э. А. КАРАХАНОВ, Е. А. ДЕМЬЯНОВА, Л. Н. БОРОДИНА, Е. А. ВИКТОРОВА

ОБ ИОННОМ ГИДРИРОВАНИИ БЕНЗОФУРАНОВ

(Представлено академиком О. А. Реутовым 9 VII 1973)

В последние годы интенсивно изучается реакция ионного гидрирования (1-3), однако поведение гетероароматических систем в условиях этой реакции почти не исследовано. Описано ионное гидрирование 2,3-диметилиндола, который при взаимодействии с триэтилсиланом и трифторуксусной

кислотой образует 2,3-диметилиндолин (4).

Целью настоящей работы было изучение реакции ионного гидрирования бензофурана, 2-метил- и 3-метилбензофуранов. В качестве донора протонов выбрана трифторуксусная кислота, донором гидрид-ионов служил триэтилсилан. Продолжительность опытов варьировалась от 30 мин. до 10 час., интервал температур 20—70°. Продукты реакции анализировали с использованием методов газожидкостной хроматографии, ядерного магнитного резонанса и масс-спектрометрии. Изучение ионного гидрирования бензофуранов показало, что они активно вступают в эту реакцию (табл. 1). Выходы продуктов гидрирования зависят от строения исходного бензофурана и достигают в некоторых случаях 90%.

 $\begin{tabular}{ll} $T\ a\ f\ \pi\ u\ u\ a\ 1$ \\ $P\ e\ syntatis\ ou in to в по вонному гидрированию бензофуранов. \\ $\Gamma\ u\ dpupy io man apa: $CF_3COOH---(C_2H_5)_3SiH$ \end{tabular}$

Исходное вещество	Соотношение бензофуран : : (С ₂ H ₅) ₃ SiH : : CF ₃ COOH	T-pa, °C	Время, час.	Выход продукта гидриро- вания, %	
Бензофуран	2:3:5 To же » » 2:3:3 2:3:7 2:3:10 2:3:5 To же » » » » 2:3:5 To же 2:3:5 To же	20 40 60 70 60 60 60 60 60 60 60 60 60 60 60	3 3 3 3 3 3 0,5 2 3 7 10 0,5 2 2 7	6 15 41 54 14 48 66 17 36 41 51 55 84 91 62 66	

Направление протонирования бензофурана и метилбензофуранов определялось в опытах с использованием дейтерированной трифторуксусной кислоты (табл. 2).

В масс-спектре продуктов реакции ионного гидрирования бензофурана гидрирующей парой СF₃COOD—(C₂H₅)₃SiH имеется пик ионов с *m/e* 121, что соответствует монодейтерированному аналогу 2,3-дигидробензофурана.

В масс-спектре также присутствуют пики ионов с m/e 122 и 123, соответствующие ди- и тридейтерированным 2,3-дигидробензофуранам. Специально поставленными опытами было показано, что 2,3-дигидробензофуран при взаимодействии с дейтерированной трифторуксусной кислотой вступает в реакцию дейтерообмена.

Аналогичные данные были получены при анализе продуктов ионного гидрирования 2-метил- и 3-метилбензофуранов, в масс-спектрах которых

Таблипа 2

Результаты опытов по нонному гидрированию бензофуранов. Гидрирующая пара: CF_3COOD — $(C_2H_5)_3SiH$; температура 60° ; соотношение бензофуран: $:(C_2H_5)_3SiH: CF_3COOD = 2:3:5$

Исходное вещество	Время, час	Выход продуктов гидрирова- ния, %	Строение про- дукта гидриро- вания
	7	47	D
O CH ₃	2	86	D
CH ₃	7	60	O D CH ₃

основными являются пики ионов с m/e 135, соответствующие монодейтерированным метил-2,3-дигидробензофуранам. Пики ионов с m/e 136 и 137 свидетельствуют о наличии некоторых количеств соответствующих полидейтерированных аналогов. Анализ соотношения интенсивностей пиковионов с m/e 120, 121 и 122, образующихся в результате элимипирования метильного радикала из молекулярного иона (M^+ — CH_3), позволяет заключить, что метильная группа не содержит дейтерия и, следовательно, вся дейтерометка находится в окисном кольце метил-2,3-дигидробензофурана.

Изучение спектров п.м.р. продуктов понного гидрирования бензофуранов показало, что в случае бензофурана и 2-метилбензофурана атака протона преимущественно направлена в положение 3 молекулы бензофурана:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Протонирование в положение 3 2-метилбензофурана облегчается по сравнению с незамещенным бензофураном, вследствие электронодонорного влияния метильной группы. Такое течение реакции находится в согласии с расчетными данными по распределению электронной плотности в молекуле бензофурана (5).

В отличие от бензофурана и 2-метилбензофурана протонирование 3-метилбензофурана происходит в положение 2:

$$\begin{array}{c} CH_{3} \\ CF_{3}COOD \\ H \end{array} \begin{array}{c} CH_{3} \\ CC_{2}H_{5})_{3}SIH \\ CC_{2}H_{5} \\ CH_{3} \\ CC_{2}H_{5} \\ CH_{3} \\ CC_{2}H_{5} \\ CH_{3} \\ CC_{2}H_{5} \\ CH_{3} \\ CC_{2}H_{5} \\ CC_{3}H_{5} \\ CC_{4}H_{5} \\ CC_{5}H_{5} \\ CC_{5}H_{$$

При сопоставлении полученных результатов можно заключить, что положение метильной группы в молекуле бензофурана оказывает решающее влияние на направление протонирования. Большая склонность к реакции ионного гидрирования 2-метилбензофурана по сравнению с 3-метилпроизводным может объясняться большей устойчивостью соответствующего карбониевого иона.

Таким образом, исследованные бензофураны по их активности в реакции ионного гидрирования могут быть расположены в следующий ряд:

Московский государственный университет им. М. В. Ломоносова

Поступило 27 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Д. Н. Курсанов, З. Н. Парнес и др., ДАН, 205, 104 (1972). ² Д. Н. Курсанов, З. Н. Парнес и др., ДАН, 202, 874 (1972). ³ З. Н. Парнес, Г. И. Болестова, Д. Н. Курсанов, Изв. АН СССР, сер. хим., 1972, 1987. ⁴ З. Н. Парнес, В. А. Будылин и др., Журн. орг. хим., 8, 2564 (1972). ⁵ L. Klasing, E. Рор, N. Trinaistic, Tetrahedron, 28, 3465 (1972).