УДК 577.15.063

БИОХИМИЯ

Член-корреспондент АН СССР В. Л. КРЕТОВИЧ, М. П. ПОПОВ, С. С. ЩЕРБАКОВ

ВЫДЕЛЕНИЕ СУЛЬФГИДРИЛЬНЫХ СОЕДИНЕНИЙ ДРОЖЖАМИ SACCHAROMYCES CEREVISIAE В ПРОПЕССЕ БРОЖЕНИЯ

Настоящее сообщение посвящено эффекту выделения сульфгидрильных соединений пекарскими дрожжами Saccharomyces cerevisiae в процессе брожения. Выделение сульфгидрильных соединений изучали как в условиях голодания дрожжевой клетки (при инкубации в воде), так и в условиях интенсивного брожения в присутствии различных сахаров.

Объектом исследования служили заводские прессованные пекарские дрожжи с подъемной силой 57 мин. Навеску дрожжей суспендировали в воде или в растворе сахара в соотношении 1:10 при 30° до получения однородной массы. Суспензию дрожжей термостатировали при 30° и через каждый час, предварительно перемешав, отбирали пробы для анализа. Отобранную пробу центрифугировали в течение 15 мин. при 4000 об/мин. В надосадочной жидкости, не содержащей дрожжевых клеток («дрожжевая вода»), определяли сульфгидрильные соединения методом амперометрического титрования (¹) и выражали их количество в эквивалентах глютатиона (в ү/мл). Параллельно в присутствии восстановителя (насыщенный раствор Na₂SO₃) определяли суммарное содержание —S—S—+—SH-соединений.

При кратковременном настаивании прессованных дрожжей в условиях голодания извлекается небольшое количество SH-соединений, но даже 6-часовое настаивание почти не дает прироста их, что соответствует литературным данным (2). В условиях интенсивного брожения дрожжевые клетки активно выделяют в окружающую среду SH-соединения (табл. 1). Природа добавляемого сахара оказывает большое влияние на этот процесс. Арабиноза не сбраживается дрожжами, и в ее присутствии клетки не выделяют сульфгидрильных соединений. Мальтоза сбраживается слабее

Таблица 1 Влияние сахаров на выделение сульфгидрильных соединений дрожжами, µг/мл

							^		, .	_			
Продолжи- тельность инкубации, часы		Арабиноза			Глюкоза		Фруктоза		Cax	Caxaposa		Мальтоза	
		1		2	1	2	1	2	1	Ž	1	2	
		Бе	3 ;	цоп	олниг	ельн	000 8	3 O T H O	го пит	ания			
1 2 4 6		0 0 0 0		0 0 0 0	9,8 11,8 15,6 16,6	9,3 15,1 18,1 20,0	12,8 17,5 21,7 18,7	12,4 16,9 21,8 23,0	10,7 15,3 19,0 19,0	10,8 15,4 20,9 21,5	0,3 0,3 1,3 3,	3 1,6 8 3,1	
		С	до	пол	ните	льны	м азо	тным	питав	ием			
1 2 4 6		0 0 0 0		0 0 0	9,8 18,7 27,0 30,0	9,3 19,6 30,2 32,2	12,8 26,1 33,5 38,0	13,0 25,6 37,2 38,4	12,3 23,0 31,3 34,3	12,0 22,4 33,8 36,9	2, 3, 4, 6,	$\begin{array}{c c} 7 & 3,7 \\ 9 & 6,2 \end{array}$	

Примечание. 1 — без восстановителя, 2 — с восстановителем.

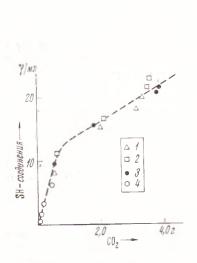


Рис. 1. Зависимость выделения SH-соединений от интенсивности брожения. 1—глюкоза, 2—фруктоза, 3—сахароза, 4—мальтоза

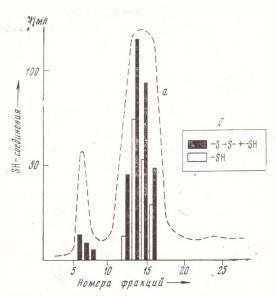


Рис. 2. Фракционирование лиофилизированной «дрожжевой воды» на сефадексе G-50. $a-D_{280},\; \delta-$ содержание SH-соединений

других сахаров, и интенсивность выделения SH-соединений значительно уступает вариантам опыта с использованием глюкозы, сахарозы п особенно фруктозы. На последних этапах брожения часть сульфгидрильных соединений окисляется, поэтому титрование SH-групп в присутствии восстановителя, как видно из полученных данных, более точно отражает процесс

Таблица 2 Влияние ПХМБ и мерсалила на количество определяемых SH-соединений, иг/мл

and the state of t					
До прибавления	После прибавления SH-блокирующих агентов				
SH-блокирую- щих агентов	расчетные данные	эксперимен- тальные данные			
Enos atamina *	0	0			
4,9	0	0			
6,1	0	0			
10,1	$\frac{2,5}{7,5}$	2,5			
13,5	5,9	5,8			
	о (4,9 6,1 10,1 15,1	SH-блокиру SH-блокиру расчетные данные 0 0 4,9 0 6,1 0 10,1 2,5 15,1 7,5 13,5 5,9			

Примечание. Числа над чертой — данные для ПХМБ, числа под чертой — для мерсалила.

выделения дрожжами SH-соединений. Как видно из рис. 1, выделение сульфгидрильных соединений тесно связано с интенсивностью брожения. Контроль исследуемых дрожжей методом окрашивания метиленовой синью выявил только единичные мертвые клетки, и их количество в процессе брожения не увеличивалось. Таким образом, прирост сульфгидрильных соединений в процессе брожения нельзя объяснить увеличением числа мертвых клеток.

При добавлении азотного питания (0,1% сульфата аммония) значительно усиливается выделение SH-соединений (табл. 1). Так, например, после 6 час. брожения в опыте с сахарозой дополнительное азотное питание увеличивает содержание сульфгидрильных соединений «в дрожжевой воде» почти вдвое. Применение SH-блокирующих агентов, таких как ПХМБ и мерсалил, показало, что амперометрическим титрованием действительно определялись сульфгидрильные соединения. Вводя строго определенные количества SH-блокирующего агента, мы рассчитывали теоретический эффект блокировки и сопоставляли его с полученными экспериментальными данными. Как видно из табл. 2, расчетные и опытные данные хорошо совпадают. Выделяющиеся сульфгидрильные соединения являются низкомолекулярными. Об этом свидетельствует фракционирование лиофилизированной «дрожжевой воды» на сефадексе G-50 (рис. 2). Почти все определяемые сульфгидрильные соединения находятся в низкомолекулярной фракции. В белковой фракции выявлено небольшое количество SH-групп только в присутствии восстановителя.

Полученные данные показывают, что выделение дрожжами сульфгидрильных соединений в процессе брожения— физиологический процесс, теснейшим образом связанный с обменом бродящей дрожжевой клетки.

Технологический институт пищевой промышленности Москва Поступило 11 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ E. Ruth Benesch, H. A. Lardy, R. Benesch, J. Biol. Chem., **216**, 663 (1955). ² H. И. Проскуряков, Хлебопекарная промышленность, № 1, 3 (1940).