УДК 519.46/513.88

MATEMATUKA

г. л. литвинов

ХАРАКТЕРЫ И ПРОСТЫЕ ПРЕДСТАВЛЕНИЯ

(Представлено академиком А. Н. Тихоновым 6 VI 1973)

В работе рассматриваются характеры непрерывных представлений топологических алгебр и групп в локально-выпуклых пространствах и указывается класс представлений, каждое из которых определяется своим характером с точностью до некоторой естественной эквивалентности. Все линейные пространства рассматриваются над полем комплексных чисел, все локально-выпуклые пространства предполагаются отделимыми.

1. Пусть E — локально-выпуклое пространство, E' — сопряженное к Eпространство. Значение линейного функционала $x' \in E'$ на векторе $x \in E$ будем обозначать через $\langle x', x \rangle$. Обозначим через $\mathscr{S}(E)$ алгебру всех линейных слабо непрерывных операторов в Е, наделенную слабой операторной топологией (которая задается полунормами $A \mapsto \langle x', Ax \rangle$, где x и x'пробегают E и E' соответственно). Пусть $\mathfrak A$ — ассоциативная топологическая алгебра с раздельно непрерывным умножением и с единицей (в настоящей работе рассматриваются только такие топологические алгебры). Непрерывным представлением T алгебры $\mathfrak A$ в пространстве E будем называть такое непрерывное отображение $T: \mathfrak{A} \to \mathscr{S}(E)$, которое является гомоморфизмом алгебр с единицей. Если образ гомоморфизма T плотен в $\mathcal{S}(E)$, то представление Т называется вполне неприводимым. Ядро $\operatorname{Ker} T = \{a \in \mathfrak{A}: T(a) = 0\}$ непрерывного представления является замкнутым двусторонним идеалом в Ч. Будем называть представления и зо мор фными, если их ядра совпадают (см. (9) и (6)). Вполне неприводимые представления изоморфны тогда и только тогда, когда они «функционально эквивалентны» в смысле работы Фелла (7). Поэтому изоморфные вполне неприводимые представления будем называть эквивалентными по Феллу. Для конечномерных неприводимых представлений эквивалентность по Феллу совпанает с обычной эквивалентностью (определяемой оператором подобия).

Введем важное

Определение. Непрерывное представление T топологической алгебры $\mathfrak A$ назовем просты м, если $\ker T$ — максимальный замкнутый двусторонний идеал в $\mathfrak A$, т. е. если всякий замкнутый двусторонний идеал, содержащий в себе $\ker T$, совпадает с $\ker T$ или с $\mathfrak A$.

Неприводимые представления обычно бывают простыми. Всякое ко-

нечномерное неприводимое представление является простым.

2. Пусть G — локально-компактная группа, C(G) — пространство непрерывных функций на G, наделенное топологией равномерной сходимости на компактах. Через $\mathcal{M}(G)$ обозначим топологическую групповую алгебру, состоящую из всех комплексных мер Радона с компактным носителем на G, т. е. линейных непрерывных функционалов на C(G), и наделенную слабой топологией $\sigma(\mathcal{M}(G), C(G))$. Произведением элементов в $\mathcal{M}(G)$ является свертка мер, а единицей служит мера Дирака, сосредоточенная в единице группы G. Следуя работе G0, представление G1, группы G3 в пространстве G2, с. е. гомоморфизм группы G3 в группу обратимых операторов из G3 будем называть не прерывным, если:

1) все матричные элементы, т. е. функции вида $g\mapsto\langle x',\,T_sx\rangle$, непрерыв-

ны на G,

2) для любого элемента $a \in \mathcal{M}(G)$ существует такой оператор $T(a) \in$

 $\in \mathcal{S}(E)$, who $\langle x', T(a)x \rangle = \int \langle x', T_g x \rangle da(g)$ and been $x \in E$, $x' \in E'$.

Можно проверить, что соответствие $a\mapsto T(a)$ является непрерывным представлением алгебры $\mathcal{M}(G)$ и что таким образом устанавливается взаимно однозначное соответствие между непрерывными представлениями группы G и алгебры $\mathcal{M}(G)$ (см. (9)). Для непрерывности представления $g\mapsto T_g$ группы G достаточно, чтобы пространство E было полным или квазиполным и чтобы соответствие $(g,x)\mapsto T_gx$ было непрерывным отображением $G\times E\to E$ (см. (12)). Непрерывные представления группы G будем называть неприводимыми, простыми, изоморфными, эквивалентными, если таковы соответствующие представления алгебры $\mathcal{M}(G)$. Если группа имеет массивную компактную подгруппу, то для ее вполне неприводимых представлений эквивалентность по Феллу совпадает с эквивалентностью по Наймарку (см. (7)). Рассуждая так же, как в п. 8 § 2 работы (2), можно доказать следующую лемму.

 Π е м м а. Если локально-компактная группа G имеет массивную компактную подгруппу (например, если G — линейная полупростая группа Π и), то любое вполне неприводимое непрерывное представление этой груп-

пы является простым.

3. Пусть $\mathfrak A$ — топологическая алгебра. Линейное пространство $\mathfrak B$ является двусторонним $\mathfrak A$ -модулем, если его элементы можно умножать слева и справа на элементы из $\mathfrak A$, причем умножение ассоциативно и дистрибутивно относительно сложения в $\mathfrak A$ и $\mathfrak B$; кроме того, будем всегда предполагать, что $1 \cdot b = b$ (или $b \cdot 1 = b$) для всех $b \in \mathfrak B$, где 1 — единица в $\mathfrak A$. Двусторонним $\mathfrak A$ -модулем является любой двусторонний идеал в $\mathfrak A$. Если G — группа Ли с инвариантной мерой dg, то пространство $C_0^{\infty}(G)$ гладких финитных функций на G можно отождествить с плотным двусторонним идеалом в $\mathcal M(G)$, сопоставляя функции $\varphi(g)$ меру $\varphi(g)dg$. Таким образом, $C_0^{\infty}(G)$ является двусторонним $\mathcal M(G)$ -модулем со сверткой в качестве умножения. Другими примерами двусторонних $\mathcal M(G)$ -модулей являются пространство Шварца на полупростой группе Ли G (см. $\binom 8$) и пространство суммируемых функций на локально-компактной группе G.

Xарактером непрерывного представления T топологической алгебры $\mathfrak A$ будем называть такой линейный функционал χ , определенный на про-

извольном двустороннем А-модуле В, что

1) $\chi(ab) = \chi(ba)$ для всех $a \in \mathfrak{A}$, $b \in \mathfrak{D}$,

2) если T(a) = 0, то $\chi(ab) = 0$ для всех $b \in \mathfrak{B}$.

Характер χ назовем непрерывным, если линейная форма $a \mapsto \chi(ab)$ непрерывна на $\mathfrak A$ при любом фиксированном $b \in \mathfrak B$. Характером непрерывного представления локально-компактной группы G будем называть характер соответствующего представления алгебры $\mathcal M(G)$. Ясно, что характер, который определен на $C_0^\infty(G)$ и является обобщенной функцией на G, непрерывен в указанном выше смысле. Характеры бесконечномерных представлений групп Ли впервые рассматривали Гельфанд и Наймарк (¹), трактовавшие характеры как обобщенные функции. Можно доказать, что всякое непрерывное вполне неприводимое представление полупростой линейной группы Ли в любом локально-выпуклом пространстве имеет ненулевой характер, являющийся обобщенной функцией. В общем случае характер непрерывного неприводимого (даже унитарного) представления группы Ли не обязан сводиться к обобщенной функции.

Теорема 1. Простое непрерывное представление T топологической алгебры $\mathfrak A$ в произвольном локально-выпуклом пространстве, имеющее нетерывный характер $\chi \neq 0$, определяется функционалом χ с точностью до изоморфизма (так что непрерывные простые представления, имеющие

одинаковые непрерывные ненулевые характеры, изоморфны).

Доказательство. Пусть I_x — замкнутый двусторонний идеал в \mathfrak{A} , состоящий из всех таких элементов $a \in \mathfrak{A}$, что $\chi(ab) = 0$ для всех $b \in \mathfrak{B}$. Идеал I_x не совпадает с \mathfrak{A} (иначе $\chi(b) = \chi(1 \cdot b) = 0$ для всех $b \in \mathfrak{B}$) и содер-

жит максимальный идеал $\operatorname{Ker} T$, т. е. $\operatorname{Ker} T = I_x$. Теорема доказана, так как

идеал I_x зависит только от χ .

Следствие 1. Неприводимое конечномерное представление $a\mapsto T(a)$ алгебры $\mathfrak A$ определяется своим классическим характером $a\mapsto \operatorname{tr} T(a)$ с точностью до обычной эквивалентности.

Следствие 2. Пусть T — произвольное непрерывное вполне неприводимое представление локально-компактной группы G с массивной компактной подгруппой (например, линейной полупростой группы $\mathcal{J}u$), и пусть χ — такой функционал, определенный на плотном идеале I в \mathfrak{A} , что $\chi(b) = \operatorname{tr} T(b)$, если $b \in I$ и T(b) — конечномерный оператор.

Тогда представление Т определяется функционалом х с точностью до

эквивалентности по Наймарку.

Действительно, можно проверить, что сужение функционала χ на идеал, состоящий из всех таких элементов $b \in I$, что T(b) — конечномерный оператор, является ненулевым непрерывным характером представления T. Поэтому следствие 2 вытекает из теоремы 1 и леммы. Для непрерывных представлений полупростых групп Ли в банаховых пространствах теоремы о характерах см. в (3) и (5). Теорию характеров унитарных представлений групп см. в (11).

4. В дальнейшем для простоты изложения будем предполагать, что E — квазиполное бочечное пространство (например, банахово, полное метризуемое или рефлексивное пространство). В этом случае каждый оператор из $\mathcal{S}(E)$ является непрерывным, а для непрерывности представления локально-компактной группы в пространстве E достаточно, чтобы матричные элементы этого представления были непрерывными функциями.

Линейный оператор $A{\in}\mathcal{S}(E)$ называется ядерным, если он имеет

вид
$$x \mapsto Ax = \sum_{n=1}^{\infty} \lambda_n \langle x_n', x \rangle x_n$$
, где $\{x_n\}$ — ограниченная последовательность

в E, $\{x_n'\}$ — слабо (и сильно) ограниченная последовательность в E', а $\{\lambda_n\}$ — такая числовая последовательность, что $\sum |\lambda_n| < \infty$. Указанное разложение оператора в сумму одномерных проекторов будем называть правильного ряда не зависит от правильного разложения оператора, то она называется с ледо м этого оператора и обозначается через tr A. Если пространство E имеет базис Шаудера, то всякий ядерный оператор в E имеет однозначно определенный след. С другой стороны, существует рефлексивное банахово пространство, в котором не всем ядерным операторам можно однозначно приписать след (см. $\binom{4}{5}$, $\binom{10}{5}$).

Пусть T — непрерывное представление топологической алгебры $\mathfrak A$ в пространстве E, и пусть это представление продолжено на двусторонний $\mathfrak A$ -модуль $\mathfrak B$, т. е. каждому элементу $b \in \mathfrak B$ так сопоставлен оператор $T(b) \in \mathscr S(E)$, что T(ab) = T(a)T(b) и T(ba) = T(b)T(a) для всех $a \in \mathfrak A$. Характер χ представления T, определенный на $\mathfrak B$, будем называть каноническим, если:

1) для каждого элемента $b \in \mathfrak{B}$ оператор T(b) является ядерным и допускает такое правильное разложение $T(b) \colon x \mapsto \sum \lambda_n \langle x_n', x \rangle x_n$, что $\chi(ab) = \sum \lambda_n \langle x_n', T(a) x_n \rangle$ для всех $a \in \mathfrak{A}$,

2) $\chi(b) = 0$, если T(b) = 0.

Таким образом, $\chi(b) = \chi(1 \cdot b) = \sum \lambda_n \langle x_n', x_n \rangle$, т. е. $\chi(b) = \operatorname{tr} T(b)$, если след оператора T(b) однозначно определен. С другой стороны, если оператор T(b) имеет однозначно определенный след для каждого элемента $b = \mathfrak{B}$, то функционал $b \mapsto \operatorname{tr} T(b)$ является каноническим характером представления T.

T е о р е м а 2. Канонический характер χ непрерывного представления T локально-компактной группы G в квазиполном бочечном пространстве E всегда непрерывен.

Для доказательства достаточно любому элементу b из области определения характера χ сопоставить такую непрерывную функцию $\varphi(g)$ на G, что $\chi(ab) = \int \varphi(g) \ da(g)$ для всех $a \in \mathcal{M}(G)$. Следует положить $\varphi(g) = \sum \lambda_n \langle x_n', T_g x_n \rangle$, где $\{\lambda_n\}, \{x_n\}, \{x_n'\}$ — последовательности, определяющие правильное разложение оператора T(b), упоминаемое в определении

канонического характера.

5. Определение канонического характера можно обобщить на случай представлений в произвольных локально-выпуклых пространствах, если вместо ядерных операторов рассматривать операторы Фредгольма (см. (4)). Теорема 2 переносится на этот общий случай, если требовать, чтобы соответствие $(g, x) \mapsto T_g x$ было непрерывным отображением $G \times E \to E$. Результаты настоящей работы справедливы (с небольшими оговорками) для алгебр, имеющих не двустороннюю, а левую или правую единицу. Такие топологические алгебры возникают, например, в связи с операторами обобщенного сдвига.

Автор выражает глубокую благодарность Д. П. Желобенко, беседы с которым стимулировали настоящую работу и повлияли на ее содержа-

ние.

Поступило 30 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. М. Гельфанд, М. А. Наймарк, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 36, 1 (1950). ² R. Godement, Trans. Am. Math. Soc., 73, № 3, 496 (1952). ³ Harish-Chandra, Trans. Am. Math. Soc., 76, 234 (1954). ⁴ A. Grothendieck, Mem. Am. Math. Soc., 16, 1 (1955). ⁵ Ф. А. Березин, Тр. Моск. матем. общ., 6, 371 (1957). ⁶ М. А. Наймарк, ДАН, 137, № 2, 278 (1961). ⁷ J. М. G. Fell, Acta Math., 114, № 3—4, 491 (1965). ⁸ Harish-Chandra, Acta Math., 116, 1 (1966). ⁹ Г. Л. Литвинов, Тр. семинара по векторн. и тензорн. анализу, МГУ, 16, 267 (1972). ¹⁰ Р. Епflo, Acta Math., in press. ¹¹ R. Godement, Ann. Math., 59, № 1, 47 (1954). ¹² F. Bruhat, Bull. Soc. Math. France, 84, 97 (1956).