УДК 539.292:548.673

ТЕХНИЧЕСКАЯ ФИЗИКА

В. В. НЕМОШКАЛЕНКО, В. Г. АЛЕШИН, М. Т. ПАНЧЕНКО, А. И. СЕНКЕВИЧ

ИСПОЛЬЗОВАНИЕ РЕНТГЕНОВСКИХ ЭМИССИОННЫХ СПЕКТРОВ ДЛЯ РАСЧЕТА ПЛОТНОСТИ СОСТОЯНИЙ

(Представлено академиком Г. В. Курдюмовым 24 IV 1973)

Плотность электронных состояний N(E) определяет многие важные физические свойства кристаллов — оптические, магнитные, фотоэмиссионные, тепловые. Особый интерес для изучения плотности состояний представляет рентгеноспектральный метод, который позволяет выполнить исследование электронных состояний кристалла по всей ширине валентной зоны. В данной работе произведен расчет плотности состояний с использованием энергетических параметров, найденных из рентгеновских эмиссионных и оптических спектров.

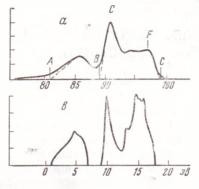
Как известно (1), интенсивность рентгеновского излучения описывается формулой

$$I(E) = v^2 \int_{S(E)} \frac{|M(\mathbf{k})|^2 dS}{|\nabla E(\mathbf{k})|},$$

где v — частота испускаемого фотона, а интегрирование производится по

изоэнергетической поверхности S(E).

Как было показано в работах $\binom{2}{3}$, $|M(\mathbf{k})|^2$ — квадрат модуля матричного элемента вероятности перехода валентная зона — остовные состояния для диэлектриков сильно зависит от квазиимпульса электрона и различен


для переходов на остовные уровни разного типа симметрии.

На примере рассмотрения кристаллов BN, SiC, BP (с малыми значениями ширины внутренних уровней) в (4 , 5) было высказано утверждение, что в рентгеновских эмиссионных спектрах отображаются особенности Ван-Хове хода плотности состояний. Необходимо отметить, что вследствие разной ширины внутренних уровней и действия вероятности перехода, сглаживающей отдельные участки спектра, не все особенности хода N(E) можно увидеть из одной эмиссионной полосы. Благодаря отображению особенностей Ван-Хове рентгеновские эмиссионные спектры можно использовать для получения количественных данных о структуре энергетических зон и, следовательно, плотности состояний.

Известны попытки получить представление о плотности состояний непосредственно, комбинируя в разных отношениях интенсивности эмиссионных полос разных серий. Поскольку в этом случае коэффициенты, определяющие соотношение между вкладами отдельных полос, остаются неизвестными и нет каких-либо обоснованных соображений, позволяющих сделать их выбор, то получаемая таким образом общая кривая плотности состояний неизбежно носит лишь качественный характер. Однако даже в этом случае она передает некоторые характерные особенности N(E)-кривой, что, как нам кажется, подтверждает выдвинутые в (4 , 5) соображения об отображении в рентгеновских эмиссионных спектрах особенностей хода N(E).

Более правильным был бы другой подход, в котором не используется предположение о том, что распределение интенсивности в рентгеновских

эмиссионных полосах непосредственно отображает распределение плотности состояний в валентной зоне кристалла. Из экспериментально определенных параметров рентгеновских эмиссионных полос берутся только энергетическое положение особенностей Ван-Хове. Эти данные затем используются в качестве экспериментальных параметров для расчета методом псевдопотенциала энергетических зон и плотности состояний кристаллов.

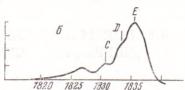


Рис. 1. Рентгеновские эмиссионные спектры и плотность состояний в валентной зоне β -SiC; a — рентгеновская $L_{\text{II}, \text{III}}$ -полоса Si, ϵ — плотность электронных состояний N(E) в валентной зоне

Возможности такого подхода проиллюстрируем на примере использования рентгеновских эмиссионных K (6) и $L_{\text{II, III}}$ (7) полос кремния в β -SiC. Рентгеновские эмиссионные полосы интерпретировались с точки зрения зонной теории и данные по энергетическому положению наплывов C, D, E, F, а также точек A и G, определяющих низкоэнергетическую и высокоэнергетическую границы эмиссионных полос (определялись прямолинейным отсеканием) (рпс. 1), были использованы в расчете. Точки G и B фиксируют ширину верхней части валентной зоны кристалла β -SiC. Для привязки зоны проводимости к валентной зоне дополнительно привлекались сведения об энергиях нескольких оптических переходов (8): $E(X_{1c}-\Gamma_{15v})=2,4$; $E(X_{3c}-X_{5v})=8,3$; $E(L_{3c}-L_{3v})=2,7$; $E(\Gamma_{15c}-\Gamma_{15v})=7,8$; $E(L_{1c}-L_{3v})=6,0$; $E(\Gamma_{1c}-\Gamma_{15v})=4,6$ эв. Все определенные таким образом экспериментальные значения энергий, использованные в расчете, представлены в табл. 1.

Таблица 1 Теоретические и экспериментальные значения энергий зонных состояний для β-SiC

	Состояние	Экспери-	Расчет	Данные	Состояние	Экспери-	Расчет	Данные
		мент	raciei	(11)	GOCTONINE	мент	Facter	(11)
Валентная зона					Зона проводимости			
A B C D E F G	$\Gamma_{1v} \atop L_{1v} \atop K_{1v} = W_{1v} \atop K_{1v} = W_{v} * \atop K_{5v} \atop L_{3v} \atop \Gamma_{15v}$	8.1 9.7 12,3 14,3 16,1 18,1	0 8,8 10,0 12,0—12,6 14,3 16,1 17,6	0 8,8 — 14,0 16,2 17,1	$X_{1c} \ X_{3c} \ \Gamma_{15c} \ L_{1c} \ L_{3c}$	20,5 23,2 25,9 22,1 25,8	19,9 21,4 24,4 22,5 26,5	19,4 21,0 24,4 22,0 25,5

^{*} Для особенности D симметрия состояния W нами не определена.

Для описания зонной структуры кристалла оказалось достаточным определить 11 псевдопотенциальных форм-факторов. Расчет энергий производился аналогично (°). В базис для точки к общего положения входило

100 плоских волн. Методом Левдина (10) матрицы 100 порядка сводились к матрицам 23 порядка, собственные значения которых находились. Отибка, связанная с использованием процедуры Левдина, для 8 низших собственных значений не превышает 0,1 эв. Из табл. 1 видно, что согласие между использованными и полученными в результате расчета значениями энергии достаточно хорошее. Хорошо согласуются вычисленные энергии и с результатами расчета (11) энергетических зон в кристалле β-SiC, выполненного самосогласованным методом ОПВ.

Таблица 2 Найденные значения псевдопотенциальных форм-факторов для кристалла β-SiC

k ²	$_{V^{\mathrm{S}}}$	V^A		γS	V^A
3	0,230	0,084	12	0	0,213
4	0	0,171	16	0.151	0
8	0,149	0	19	-0.082	0,055
11	0,316	-0,235	20	0	0,005

Для нахождения плотности состояний расчет производился в 1638 точках в $^{1}/_{48}$ части зоны Бриллюэна (61 776 точек во всей зоне). Рассчитанная плотность состояний изображена на рис. 1.

Сравнивая вычисленную плотность состояний с эмиссионными K- и $L_{\rm III,\ III}$ -спектрами (рис. 1), можно увидеть, сколь важна роль вероятности перехода, которая по-разному искажает ход плотности состояний в K- и $L_{\rm III}$ -полосах.

Следует отметить, что совместное использование рентгеноспектральных и оптических данных как раз и позволяет получить зонную структуру по всей ширине валентной зоны (одни оптические спектры, как правило, могут хорошо передать ход $E(\mathbf{k})$ только для зоны проводимости и верха валентной зоны).

Институт металлофизики Академии наук УССР Киев Поступило 9 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Бете, А. Зоммерфельд, Электронная теория металлов, ИЛ, 1938, стр. 130. ² В. Г. Алешин, В. П. Смирнов, ФТТ, 11, 2010 (1969). ³ Ј. Кlima, Ј. Phys., Ser. С, 3, 70 (1970). ⁴ В. В. Немошкаленко, В. Г. Алешин, ФТТ, 12, 59 (1970). ⁵ В. Г. Алешин, В. В. Немошкаленко, Зонная структура и рентгеновские эмиссионные спектры кристаллов, Киев, 1970. ⁶ Läuger, Thesis University Munchen, 1968. ¹ G. Wiech, In Soft X-Ray Bahd Spectra, N. Y., 1969. ⁵ В. Е. Wheeler, Solid State Commun, 4, 173 (1966). ⁵ М. L. Соhen, Т. К. Вегдstresser, Phys. Rev., 141, 789 (1966). ¹ Р. О. Löwdin, J. Chem. Phys., 19, 1396 (1951). ¹ F. Herman, R. L. Kortum, L. O. Kuglin, Intern. J. Quant. Chem., 15, 533 (1967).