представляет собой логическую стратегию на игровом поле 8×8, где участники перемещают фишки по правилам, аналогичным ходу короля в шахматах, стремясь выстроить непрерывную линию из четырёх фишек.

Разработка велась с использованием языка программирования Python и библиотеки Pygame для графического интерфейса [1–3]. Одиночный режим позволяет пользователю соревноваться с простым искусственным интеллектом (ИИ), что удобно для тренировки и знакомства с механикой игры. В сетевом режиме реализована клиент-серверная архитектура на базе TCP-протокола с использованием библиотеки socket. Один из игроков создаёт сервер, другой подключается по IP-адресу, после чего начинается синхронизированная пошаговая игра.

Особенностью реализации стало добавление таймера, ограничивающего время хода до 15 секунд. В случае его истечения в одиночном режиме управление переходит к боту. Это решение придаёт игре динамичность и удерживает внимание игрока. Программа также предусматривает удобное стартовое меню с выбором режима.

Игра ориентирована на широкую аудиторию и может быть собрана в исполняемый .exe-файл, не требующий установки дополнительных библиотек, что упрощает распространение. Представленный проект демонстрирует практическое применение технологий разработки игр и может быть основой для дальнейшего совершенствования.

Литература

1 Тим, Я. PyInstaller. Использование PyInstaller для создания исполняемых файлов на Python / Я. Тим. – М.: Издательство Хабр, 2021. – 128 с.

2 Шоу, 3. Научитесь программировать на Python / 3. Шоу. — СПб. : Питер, 2021. — 432 с. 3 Свиггарт, Э. Программируем игры на Python / Э. Свиггарт. — М. : ДМК Пресс, 2019. — 384 с.

Я. П. Ходанович Науч. рук. **Е. И. Сукач**, канд. техн. наук, доцент

РАЗРАБОТКА СИСТЕМЫ МОНИТОРИНГА СЕРДЕЧНОГО РИТМА НА ОСНОВЕ МОДУЛЯ ЭКГ AD8232 И МИКРОКОНТРОЛЛЕРА ESP32

В современном мире наблюдается рост числа сердечно-сосудистых заболеваний, что обуславливает необходимость разработки доступных и эффективных систем мониторинга сердечной активности. Одним из перспективных решений является использование компактных микроконтроллеров и биомедицинских сенсоров, позволяющих в реальном времени отслеживать ЭКГ-сигнал. Для реализации такой системы был выбран модуль ЭКГ AD8232 в связке с микроконтроллером ESP32, обладающим широкими коммуникационными возможностями.

Несмотря на наличие готовых коммерческих медицинских устройств, они зачастую имеют высокую стоимость, закрытые программные платформы и ограниченные возможности кастомизации. В связи с этим актуальной задачей является создание открытой, недорогой системы мониторинга, ориентированной на учебное и исследовательское применение, а также на развитие навыков в области Интернета вещей (IoT) и биомедицинской электроники.

Основной проблемой является обеспечение стабильной регистрации ЭКГ-сигнала с минимальными помехами и передача данных на внешнее устройство для визуализации и анализа. Это требует настройки усиления сигнала, фильтрации шумов, а также эффективной обработки данных на микроконтроллере. Дополнительную сложность представляет калибровка датчиков и обеспечение корректного наложения электродов для получения точного сигнала.

Важным преимуществом ESP32 является наличие встроенного Wi-Fi и Bluetooth-модуля, что позволяет реализовать беспроводную передачу данных на смартфон, компьютер или облачный сервис. Это открывает перспективы для удалённого мониторинга состояния пациента, сбора статистики и анализа данных с использованием машинного обучения.

Проектная система состоит из двух основных блоков: аппаратной части (модуль AD8232 и микроконтроллер ESP32) и программной части (прошивка микроконтроллера и визуализация данных). Модуль AD8232 осуществляет съём ЭКГ-сигнала, ESP32 обрабатывает и передаёт данные, а на стороне пользователя информация может отображаться в виде графика в реальном времени.

Главной целью разработки являлось создание доступного, простого функционального устройства, способного не только выполнять базовый мониторинг ЭКГ, но и служить основой для дальнейших исследований, медицинских проектов и образовательных практик в области биомедицины и встраиваемых систем.

Д. С. Чернокал Науч. рук. **Е. И. Сукач**, канд. техн. наук, доцент

ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ TELEGRAM-БОТА ДЛЯ ИНТЕРНЕТ-МАГАЗИНА

Разработка Телеграм-ботов продолжает оставаться актуальной задачей в условиях цифровизации торговли, поскольку обеспечивает высокую степень автоматизации и упрощает вза-имодействие с клиентами. В современных интернет-магазинах особенно важна не только возможность демонстрации товаров, но и расширение функций для удобного поиска и администрирования каталога. С этой целью были добавлены новые функции в Телеграм-бот [1], разработанный с использованием библиотеки Aiogram 3, которая предоставляет мощный инструментарий для создания надёжных и интерактивных решений.

Реализация механизма поиска: пользователю предоставляется возможность ввести ключевое слово или фразу. После этого бот выполняет SQL-запрос к базе данных с использованием оператора LIKE, чтобы найти совпадения в названиях и описаниях товаров. Поиск работает даже при частичном совпадении, что делает его удобным инструментом для навигации по большому ассортименту продукции.

Добавление административной панели: для упрощения управления товарным каталогом в бот интегрирован специальный режим администратора. Доступ к панели имеют только пользователи, чьи user_id заранее внесены в список администраторов. Это обеспечивает надёжную защиту от несанкционированного доступа.

Пошаговое редактирование с использованием FSM: администратор может добавить новый товар, изменить существующий или удалить устаревший. Ввод данных реализован поэтапно с помощью конечных автоматов состояний (FSM), что позволяет минимизировать ошибки и упростить процесс работы с ботом.

Повышение безопасности: благодаря чётко определённой системе ролей и доступов обеспечивается безопасность управления магазином.

Таким образом, расширение функциональности Телеграм-бота позволяет не только повысить удобство использования для клиентов, но и облегчает администрирование интернетмагазина. Новые возможности делают бота мощным инструментом для цифровой торговли и создают основу для дальнейшего развития.

Литература

1 Чернокал, Д. С. Этапы создания Телеграм-бота для интернет-магазина / Д. С. Чернокал // Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях: материалы XXVIII Республиканской научной конференции студентов и аспирантов, Гомель, 17–19 марта 2025 года: в 2 ч. / М-во образования Республики Беларусь, Гомельский гос. ун-т им. Ф. Скорины; редкол.: С. П. Жогаль (гл. ред.) [и др.]. – Гомель: ГГУ им. Ф. Скорины, 2025. – Ч. 1. – С. 200–201.