УДК 517.51

MATEMATUKA

С. В. ХРУЩЁВ

СТИРАНИЕ ОСОБЕННОСТЕЙ ДЛЯ ИНТЕГРАЛОВ КОШИ И АНАЛОГ ТЕОРЕМЫ ХИНЧИНА — ОСТРОВСКОГО ДЛЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ РАСТУЩИХ ФУНКЦИЙ

(Представлено академиком В. И. Смирновым 4 VI 1973)

Задача о стирании особенностей обычно ставится так: пусть $E=\overline{E}$ — замкнутое подмножество комплексной плоскости C, а $\mathfrak{F}=\mathfrak{F}(E)$ — некоторый класс функций, аналитических вне множества E; требуется выяснить, для каких множеств E класс $\mathfrak{F}(E)$ состоит из констант. В этой статье изучается следующая конкретизация указанной задачи. Множество E лежит на единичной окружности T, X — пространство аналитических в единичном круге функций, а $\mathfrak{F}=\mathfrak{F}(X,E)$ — класс функций f=X, представимых в виде интеграла Коши меры μ с носителем на E:

$$f(z) = \int_{E} \frac{d\mu(\xi)}{\xi - z}, \quad |z| < 1.$$

Мы будем в качестве X рассматривать главным образом пространства,

состоящие из функций, гладких вплоть до границы.

Очевидно, что функции из класса \mathfrak{F} допускают аналитическое продолжение в область $\mathfrak{C}\setminus E$. Кроме того, если пространство X содержится в известном классе Харди H^i , то продолжение функции $f \in \mathfrak{F}$ во внешность единичного круга входит по теореме Риссов (¹) в H^i во внешности круга, и поэтому мера μ , представляющая функцию f, абсолютно непрерывна относительно меры Лебега $\frac{1}{2\pi} d\theta$ на окружности \mathfrak{T} . Следовательно, если ле-

бегова мера |E| множества E равна нулю, то класс \mathfrak{F} тривиален: $\mathfrak{F}=\{0\}$. Пусть $X=H^p$, $1 \le p \le +\infty$. Тогда класс $\mathfrak{F}(E)=\{0\}$ в том и только том случае, если |E|=0. Этот факт был отмечен В. П. Хавиным (2) и для других пространств X с достаточно слабой тонологией. K этому кругу вопро-

сов также имеют отношение работы (3) и (12).

Если |E|>0, то функция Альфорса множества E (4) входит в пространство $\mathfrak{F}(H^{\infty},E)$. Поэтому, если класс $\mathfrak{F}(H^{p},E)\neq\{0\}$, то он содержит функцию f, которая входит в $X=H^{p}$ «двусторонним образом», т. е. как вне, так и внутри единичного круга. Пусть теперь пространство X есть пространство C_{A} всех функций, аналитических в открытом круге |z|<1 и непрерывных в замкнутом. Ясно, что для нигде не плотных множеств E на окружности T не может быть такого же «двустороннего» решения, как в случае $X=H^{p}$.

 \dot{T} е о р е м а 1. Пусть $X=C_A$. Тогда $\mathfrak{F}(E)=\{0\}$ в том и только том случае, если |E|=0. Если |E|>0, то существует нетривиальная функция $\phi\in\bigoplus_{p<+\infty}L^p(E)$, для которой интеграл Коши $z\to\int\frac{\phi(\zeta)d\zeta}{\zeta-z}$ |z|<1, принадле-

жит классу C_{A} .

Пусть ω — модуль непрерывности. Через λ_{ω} обозначим банахово пространство функций $f \in C_A$, сужение которых на окружность T имеет модуль непрерывности $\omega_f(\delta) = o(\omega(\delta)), \delta \rightarrow +0$. Точность теоремы 1 иллюстрирует

Теорема 2. Для любого модуля непрерывности ω существует зимкнутое множество E положительной (лебеговой) меры на окружности T,

для которого $\mathfrak{F}(\lambda_{\omega}, E) = \{0\}.$

Если множество E содержит интервал, то функцией ϕ , о которой говорится в теореме 1, может быть любая гладкая функция с носителем в этом интервале. Если же множество E нигде не плотно, то строение ϕ значительно сложнее. Поведение ее интеграла Коши вне круга |z| < 1 должно быть иным, чем внутри единичного круга.

Трудности, связанные с теоремой 1, легче всего преодолеть при решении двойственной задачи, которая сводится затем к известной теореме Хинчина — Островского (¹). Пусть теперь, вообще, Y — банахово пространство аналитических в круге |z| < 1 функций, подчиненное некоторым естественным ограничениям, а X изоморфно пространству Y*, сопряженному с пространством Y. Двойственность пространств X и Y определяется билинейной формой

$$\langle f, F \rangle = \lim_{r \to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(re^{-i\theta}) F(re^{i\theta}) d\theta, \quad f \in X, \quad F \in Y.$$

Через E^* обозначим множество $\{\xi\colon \xi\equiv E\}$. Легко проверить, что класс $\mathfrak{F}(X,E)=\{0\}$ в том и только том случае, если линейное пространство L, состоящее из пар (p,p), где p — полином, плотно в пространстве $Y\times C(E^*)$. Это замечание, принадлежащее В. П. Хавину $(^2)$, позволяет свести задачу о нетривиальности класса $\mathfrak{F}(X,E)$ к описанию всех множеств $E=\overline{E}$ на единичной окружности, обладающих следующим свойством: если последовательность полиномов p_n стремится к 0 равномерно на E и нормы $\|p_n\|_Y$ ограничены в совокупности, то полиномы p_n стремятся к нулю равномерно внутри круга |z|<1. Такое свойство естественно назвать свойством Хинчина — Островского относительно Y.

В такой постановке эта задача решалась Э. М. Кегеяном (5, 6) для пространства $Y=\mathfrak{H}^2$ аналитических в круге |z|<1 функций, суммируемых с квадратом по площади. Кегеян показал, что если замкнутое множество E

положительной меры удовлетворяет условию Карлесона

$$\sum_{v} l_{v} \log(1/l_{v}) < +\infty,$$

где $(l_v)_{v\geqslant i}$ — последовательность всех интервалов, дополнительных к E *, то E обладает свойством Хинчина — Островского относительно \mathfrak{F}^2 (5). Кроме того существуют множества E положительной меры, для которых это свойство нарушается (6).

Пусть $\lambda(x)$ — положительная функция на $[0, +\infty)$ и $\lambda(x) \times +\infty$ при

 $x \to +\infty$. Предположим, что вес λ удовлетворяет условиям:

A) Функция $x \rightarrow x \log \lambda (1/x)$ полуаддитивна в окрестности 0.

Условие А) выполнено, если эта функция вогнута.

В) Функция $x \to x \log \lambda (1/x)$ не убывает в окрестности 0.

Через $A(\lambda)$ обозначим множество всех функций, аналитических в кру-

ге |z| < 1 и таких, что $f(z) = o(\lambda(1/(1-|z|))), |z| \to |1-0.$

Определение. Замкнутое множество $E \subset T$ удовлетворяет λ - условию Карлесона, если $\sum\limits_{v} l_v \log \lambda (1/l_v) < +\infty$ (l_v — длины дополнитель-

ных к E интервалов).

T е о р е м a 3. \cancel{H} редположим, что замкнутое множество E положительной меры на окружности T не содержит подмножеств положительной меры, удовлетворяющих λ -условию Карлесона.

 \check{T} огда существует такая последовательность полиномов $p_n,\;n{=}1,2,\ldots,$

470

^{*} Мы обозначаем интервал и его длину одной буквой.

I) $p_n \longrightarrow 1$ в топологии пространства $A(\lambda)$ и, следовательно, равно-

мерно внутри круга |z| < 1;

II) $p_n \longrightarrow 0$ равномерно на множестве E.

Пусть, кроме свойств А) и В), вес λ обладает свойством

C)
$$\int_{0}^{\delta} \log \lambda(1/x) dx = O(\delta \log \lambda(1/\delta)), \quad \delta \to +0.$$

Тогда справедлива

Теорема 4. Пусть замкнутое множество E положительной меры удовлетворяет λ -условию Карлесона. Предположим, что нормы последовательности полиномов p_n в пространстве $A(\lambda)$ равномерно ограничены и $p_n \to 0$ в пространстве $L^1(E)$.

Тогда $p_n \rightarrow 0$ равномерно внутри единичного круга.

Теоремы 3 и 4, очевидно, дают полное описание множеств E со свойством Хинчина — Островского для пространств $A(\lambda)$. Отметим, что условия A)—C) справедливы для таких функций:

$$\lambda(x) = \log \log \ldots \log x; \quad \lambda(x) = x^{\alpha}, \ \alpha > 0; \quad \lambda(x) = \exp x^{\alpha}, \ 0 < \alpha < 1.$$

Так как пространство $A(\lambda) \subset \mathfrak{H}^2$ для $\lambda(x) = x''$ и $\mathfrak{H}^2 \subset A(\lambda)$ для $\lambda(x) = x$. то достаточное условие, найденное Кегеяном для пространства \mathfrak{H}^2 , совпадает с необходимым.

Теоремы 3 и 4 позволяют решить задачу об устранимых особенностях

для многих пространств X.

Теорема 5. Пусть замкнутое множество E положительной меры удовлетворяет условию Карлесона $\sum l_v \log (1/l_v) < +\infty$.

Тогда существует нетривиальная ограниченная функция φ на множестве E, для которой интеграл Коши $z \mapsto \int_{\mathbb{R}} \varphi(\zeta) d\zeta/(\zeta-z)$, $|z| \le 1$, беско нечно дифференцируем в круге $|z| \le 1$.

T е о р е м а 6. Eсли множество E = \overline{E} положительной меры не содержим подмножеств положительной меры, удовлетворяющих условию Карлесона а класс X состоит из функций f, дробная производная которых $f^{[\alpha]}$ входим

в H^2 при каком-нибудь $\alpha > 0$, то $\mathfrak{F}(X, E) = \{0\}$.

Интересно отметить, что здесь проявляется тот же эффект, что и в тео ремах о множествах единственности для гладких функций (7). Если на множестве E можно расположить меру μ с интегралом Коши, подчинен ным слабым условиям гладкости, то можно построить меру с очень глад ким интегралом Коши. Отметим еще, что известные теоремы о соответ ствующей «двусторонней» задаче об устранимых особенностях функци с ограниченным интегралом Дирихле формулируются в емкостных терми нах (8 , 9).

Пусть $0 < \alpha \le 1$, а G_{α} — класс функций f, аналитических в единичног круге, для которых существует такое число q = q(f) > 0, что

$$\sup_{|z| \leq 1} |f^{(n)}(z)| \leq q^n n! n^{n/\alpha}, \quad n = 1, 2, \dots$$

Теорема 7. Класс $\mathfrak{F}(G_a, E) \neq \{0\}$ в том и только том случае, если I содержит подмножество F положительной меры, для которого

$$\sum_{\nu} l_{\nu}^{1-\alpha} < +\infty.$$

Если класс $X=G_1$, то $\mathfrak{F}(X,\,E)=\{0\}$ в том и только том случае, если нигде не плотно в Т. Это утверждение справедливо для всех неквазиан:

литических классов Карлемана * функций X, содержащихся в пространстве G_1 . Если же класс Карлемана X функций, аналитических в круге |z| < 1, квазианалитичен, то $\Re(X, E) = \{0\}$ для любого замкнутого множества E на окружности $\mathbf{T}(E \neq \mathbf{T})$. Это утверждение следует из теоремы 6 (12). Его можно вывести из теоремы 7 и из одной теоремы Левинсона (10).

Приведем пример множества положительной меры, никакое подмножество положительной меры которого не удовлетворяет λ -условию Карлесона. Пусть E — множество канторовского типа, полученное из отрезка $[0, 2\pi]$ в результате последовательных разбиений типа $[2; 0, 1-\xi_{\hbar}; \xi_{\hbar}]$ (см. $(^{11})$), и пусть |E| > 0.

T е о р е м а 8. E не содержит подмножеств положительной меры, удовлетворяющих λ -условию Карлесона в том и только том случае, если оно

само не удовлетворяет \, -условию Карлесона.

В заключение я хочу выразить благодарность В. П. Хавину за постановку задачи и за помощь при подготовке этой работы к печати.

Ленинградский государственный университет им. А. А. Жданова

Поступило 4 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Привалов, Граничные свойства аналитических функций, 1950. ² В. П. Хавин, ДАН, 151, № 3, 505 (1963). ³ Ү. Каtznelson, Bull. Am. Math. Soc., 70, № 5, 722 (1964). ⁴ А. Г. Витушкин, УМН, 22, № 6 (1967). ⁵ Э. М. Кегеян, ДАН, АрмССР, 31, № 3, 133 (1960). ⁶ Э. М. Кегеян, Изв. АН АрмССР, 1, № 5, 317 (1966). ⁷ L. Carleson, Acta Math., 87, 325 (1952). ⁸ Л. Карлесон, Избранные проблемы теории исключительных множеств, 1971. ⁹ L. Ahlfors, A. Beurling, Acta Math., 83, 101 (1950). ¹⁰ N. Levinson, Gap and Density Theorems, Am. Math. Soc. Coll. Publ. XXVI, 1940. ¹¹ А. Зигмунд, Тригонометрические ряды, 1, 1965. ¹² А. Beurling, On Quasianalyticity and General Distributions, Preprint, 1960.

^{*} Имеется в виду неквазианалитичность класса всех граничных значений функций из пространства X.