УДК 543.422.6:547.678.2

химия

Н. А. ШИМАНКО, А. Ф. МОСКВИН, М. М. КУСАКОВ , Л. И. ДОКТОРОВА

О НРОЯВЛЕНИИ КВАЗИАВТОНОМНОСТИ НАФТАЛИНОВОЙ И ФУЛЬВЕНОВОЙ ХРОМОФОРНЫХ СИСТЕМ В У.-Ф. СПЕКТРЕ ПОГЛОЩЕНИЯ МОЛЕКУЛЫ АЦЕНАФТИЛЕНА

(Представлено академиком Б. А. Долгоплоском 27 VI 1973)

Явление квазиавтономности отдельных хромофорных систем в у.-ф. спектрах поглощения ранее экспериментально установлено в производных бензола с различными функциональными замещающими группами донорно-акцепторного типа (1-4). Подобный эффект обнаружен также при исследовании спектра антрахинона, который был представлен как сумма двух независимых поглощающих систем ацетофенонового и бензохинонового типов (5). Это позволило говорить о «бензоидных» и «хиноидных»

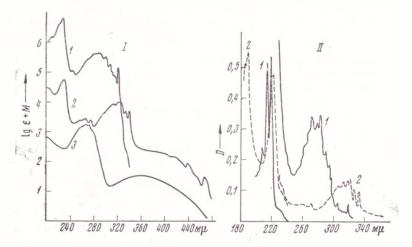


Рис. 1. У.-ф. спектры поглощения аценафтена (I) (M=2) аценафтилена (2) (M=0), 6,6-диметилфульвена (3) (M=-1) в растворе изооктана (I) и в паровой фазе (II)

полосах поглощения в у.-ф. спектре этого соединения (6). Аналогичное явление наблюдалось в спектрах производных бензоксазинона (7, 8). Для всех этих соединений в электронных спектрах поглощения отсутствуют полосы единой сопряженной системы и проявляются полосы квазиавтономных хромофорных фрагментов молекул.

В настоящей работе явление квазиантономности обнаружено для молекулы аценафтилена, являющейся примером сопряженной углеводород-

ной системы, для которой имеет место подобный эффект.

В спектре аценафтилена в растворе изооктана в интервале длин волн от 200 до 500 мµ можно выделить четыре полосы поглощения (рис. 1, I), а в паровой фазе * наблюдается и пятая полоса с максимумом при 190 мµ

^{*} Спектр поглощения сценафтилена в паровой фазе исследуется впервые.

Характеристика полос одинаковой природы в спектрах аденафтена, 6,6-диметилфульвена и аценафтилена

Аценафтен		6,6-Диметил- фульвен		Аценафтилен		Природа и	Поляризация переходов *
λ, мμ пары	λ, мμ (lg ε) изооктан	λ, мμ пары	λ, мμ (lg ε) изооктан	λ, мμ пары	λ, мμ (Ig ε) изооктан	тип полосы	в исходных хромофорных системах
-	_	255	262/252	Экспери- мент. дан- ные не по- лучены	467 (1,50) 455 (1,49) 439 (1,95) 414 (2,19) 391 (2,33) 370 (2,41)	Фульвено- вая поло- са	y ** (14, 15)
320 314 310 306	321 (3,15) 317 (2,84) 315 (2,91)	355	362 (2,52)	Полос наб ется	люда-	Бензоидная α-полоса	x, y *** (16)
296 291 284 273	311 (2,98) 307 (3,35) 301 (3,46) 290 (3,65) 279 (3,60)	_	_	334 328 318 312	340 (3,71) 334 (3,71) 324 (4,01) 312 (3,91)	Бензоидная р-полоса	x (16)
	228 (4,79)	264 258 251	272 (4,10) 266 (4,24) 258 (4,14)	272 262 223	$ \begin{array}{c} 312(3,40) \\ 275(3,40) \\ 266(2,44) \\ \sim 258(3,38) \\ 231(4,76) \end{array} $	Фульвено- вая поло- са Бензоидная	x ** (14,15) y (14)
215 209 —	_	д	 перимент. анные получены	190	<200	β-полоса Фульвено- вая поло- са	

^{*} Направление x соответствует короткой оси, а направление $y \leftarrow$ длинной оси молеку-

лы нафталина.

** В известной нам литературе сведения о поляризации электронных переходов в фуль-вене отсутствуют. Указанная поляризация полос наблюдается для циклопентадиена (14) и

имлопентадиенона (16). **** Запрещенный переход, отвечающий двум сериям полос: серии слабых полос с моментом перехода, ориентированным параллельно оси y, и серии более интенсивных полос с моментентом перехода, ориентированным параллельно оси x (16).

(рис. 1, II). Характер спектра поглощения показывает, что полосы аценафтилена с максимумами при 231 и 324 мм в изооктане представляют собой смещенные полосы аценафтена 228 и 290 мм (рис. 1), т. е. являются фактически смещенными за счет сопряжения с двойной связью β- и р-полосами молекулы нафталина (переходы ${}^{1}B_{b}$ и ${}^{1}L_{a}$ бензоидного типа по номенклатуре Платта (°)).

Сопоставление спектра аценафтилена в парах и в растворе показывает, что максимумы при 324 и 340 ми представляют собой компоненты колебательной структуры одной и той же полосы поглощения, а именно *р*-полосы. Это указывает на ошибочность выводы работ (10, 11), в которых эти максимумы относят к двум различным электронным переходам.

Полосы поглощения, наблюдающиеся для аценафтилена в областях 240-280 и 360-500 м μ отсутствуют в спектре аценафтена, а также в спектрах алкил- и винилзамещенных нафталина (12). Эти полосы своей формой, колебательной структурой и расположением напоминают полосы фульвеновой сопряженной системы, обладающей в аценафтилене определенной независимостью от остальной части молекулы. Об этом свидетельствует отсутствие сдвига полос поглощения по сравнению со спектром 6,6диметилфульвена (рис. 1). Интенсивность первой фульвеновой полосы (λ_{max} 360 мµ,lg ϵ 2,44) в аценафтилене одинакова с 6,6-диметилфульвеном, однако интенсивность второй полосы (λ_{max} 266 мµ, $\lg \epsilon$ 3,34) значительно ниже (для 6,6-диметилфульвена λ_{max} 266 мµ, $\lg \varepsilon 4,24$).

Нафталиновая хромофорная система в аценафтилене испытывает существенные изменения по сравнению с аценафтеном. За счет сопряжения с двойной связью для p-полосы наблюдается батохромный сдвиг равный 34 м μ , а для β -полосы 3 м μ . Нафталиновая α -полоса (переход в состояние $^{1}L_{b}$ бензоидного типа (9)) в спектре аценафтилена не проявляется и, повидимому, закрыта p-полосой, испытывающей при увеличении длины сопряженной системы значительно больший сдвиг, чем α -полоса. Если принять во внимание, что поведение α -полосы поглощения обычно сходно с поведением β -полосы, то можно ожидать, что начало этой полосы находится при длине волны \sim 326 м μ .

В табл. 1 сопоставлены характеристики полос поглощения рассматриваемых соединений, дано отнесение полос в спектре аценафтилена и указана поляризация электронных переходов в исходных хромофорных системах. Эта поляризация полос, за исключением второй и третьей полос (бензоидные α- и p-полосы), совпадает с поляризацией полос, установленной при квантовохимическом рассмотрении у.-ф. спектра аценафтилена методом «молекулы в молекулах» (13). Следует отметить, что в цитируемой работе расчет был построен исходя из нафталинового и этиленово-

го фрагментов молекулы.

Проведенное исследование позволяет сделать вывод, что в области 185—500 мµ спектр поглощения аценафтилена может быть представлен как сумма почти независимых хромофорных систем — фульвеновой (полосы с максимумами 360, 266 и ~190 мµ) и нафталиновой (максимумы 326, 324 и 231 мµ). Отсюда следует, что молекула аценафтилена также может быть отнесена к соединениям с квазиавтономными хромофорными группировками атомов. Интерпретация этого интересного явления в настоящее время отсутствует. Однако можно думать, что полосы, наблюдаемые в спектре поглощения аценафтилена, должны определенным образом коррелировать с электронными переходами между орбиталями, энергия и форма которых сходны с соответствующими характеристиками аналогичных орбиталей в исходных автономных хромофорных системах.

Авторы выражают признательность И. Н. Маркевич за любезное предоставление образцов аценафтена и аценафтилена, В. С. Шмарлину за предоставление 6,6-диметилфульвена, Е. Е. Миллиареси за полезное об-

суждение результатов настоящей работы.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва

Поступило 29 V 1973

Научно-исследовательский институт мономеров для синтетического каучука Ярославль

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. Е. Миллиареси, В. В. Ефремов, В. А. Измаильский, ДАН, 179, 349 (1968). ² Е. Е. Миллиареси, В. Е. Ручкин, ДАН, 198, 108 (1971). ³ В. Е. Ручкин, Е. Е. Миллиареси, ЖОХ, 42, 2725 (1972). ⁴ Е. Е. Миллиареси, В. Е. Ручкин, Е. Е. Миллиареси, ЖОХ, 42, 2725 (1972). ⁴ Е. Е. Миллиареси, В. Е. Ручкин и др., ДАН, 205, 353 (1972). ⁵ В. А. Моттоп, W. F. Еагlam, J. Chem. Soc., 1941, 159. ⁶ J. А. Вагltгор, К. J. Могдап, J. Chem. Soc., 1956, 4245. ⁷ М. В. Лосева, Б. М. Болотин и др., ЖФХ, 46, 294 (1972). ⁸ М. В. Лосева, Б. М. Болотин и др., ЖФХ, 46, 2195 (1972). ⁹ J. Platt, J. Chem. Phys., 17, 484 (1949). ¹⁰ J. Michl, R. Zahradnik, Coll. Czechoslov. Chem. Commun., 31, 2259 (1966). ¹¹ Е. Heilbronner, J. P. Weber et al., Theoret. chim. acta, 6, 141 (1966). ¹² R. A. Friedel, M. Orchin, Ultraviolet Spectra of Aromatik Compounds, N. Y.—London, 1951, p. 205, 229. ¹³ G. Favini, A. Gamba, M. Simonetta, Theoret. chim. acta, 13, 175 (1969). ¹⁴ R. S. Mulliken, J. Chem. Phys., 7, 121 (1939). ¹⁵ Е. N. Garbish, R. F. Sprecher, J. Am. Chem. Soc., 88, 3434 (1966). ¹⁶ P. Н. Нурмухаметов, Поглощение и люминесценция ароматических соединений, М., 1971, стр. 63, 71.