УДК 542.97+539.196.3

ФИЗИЧЕСКАЯ ХИМИЯ

А. Н. ШУПИК, В. М. НОВИКОВ, К. И. ЗАМАРАЕВ

ГЕОМЕТРИЧЕСКАЯ СТРУКТУРА И ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ВНЕШНЕСФЕРНЫХ КОМПЛЕКСОВ С₀(II) ПО ДАННЫМ Я. М. Р.

(Представлено академиком Н. М. Эмануэлем 17 VII 1973)

В последнее время появились работы, свидетельствующие о возможности использования метода я.м.р. для изучения не только внутрисферной, но и внешнесферной координации различных молекул парамагнитными металлами.

В работе (1) было обнаружено образование внешнесферных аддуктов бис-(ацетилацетонатом) — бис-(пиридинатом) Co(II) — $Co(aa)_2 \cdot py_2$ с молекулами $CHCl_3$ и CH_2Cl_2 , часто используемыми в я.м.р. в качестве «инертных» растворителей.

В настоящем сообщении приводятся результаты детального исследования методом и.м.р. и я.м.р. C^{13} строения и термодинамических свойств этих

аддуктов.

Спектры я.м.р. снимались на спектрометрах HA-100 фирмы «Varian»

(п.м.р.), Ci-60 (п.м.р.) и PS-100 (я.м.р. C¹³) фирмы «Jeol».

Отсутствие внешнесферной координации циклогексана контролировалось совпадением положения его линии я.м.р. относительно гексаметилдисилоксана в присутствии и отсутствии Co(II). Для подавления диссоциации $Co(aa)_2 \cdot py_2 \rightleftarrows Co(aa)_2 \cdot py + py \rightleftarrows Co(aa)_2 + 2py$ в растворы добавлялся пиридин так, чтобы $[py]/[Co(aa)_2 \cdot py_2] = 5 - 10$. Отсутствие диссоциации, а также перестройки первой координационной сферы при присоединении $CHCl_3$ и CH_2Cl_2 контролировалось по спектрам поглощения $Co(aa)_2py_2$ в видимой области.

Измерение химических сдвигов протонов CHCl₃ и CH₂Cl₂ под влиянием внешнесферной координации проводилось в условиях быстрого обмена (²) «свободных» и «закомплексованных» молекул.

Зависимость б_{эксп} от концентрации CHCl₃ и CH₂Cl₂ в присутствии Co(aa)₂·ру₂ (рис. 1) позволяет определить ступенчатые константы устойчивости внешнесферных комплексов

Со (аа) $_2 \cdot \mathrm{py}_2 + n \mathrm{L} \stackrel{\mathtt{A}_1}{\rightleftharpoons} \mathrm{Co}$ (аа) $_2 \cdot \mathrm{py}_2 \cdot \mathrm{L} + (n-1) \mathrm{L} + \rightleftharpoons \ldots \stackrel{\mathtt{A}_n}{\rightleftharpoons} \mathrm{Co}$ (аа) $_2 \mathrm{py}_2 \mathrm{L}_n$, (1) а также химические сдвиги ядер H^1 δ_0^{H} и C^{13} δ_0^{C} молекул CHCl $_3$ и $\mathrm{CH}_2\mathrm{Cl}_2$ во внешнесферном комплексе относительно сигналов свободных лигандов с помощью уравнения

$$\delta_{\text{\tiny BRCH}} = \sum_{i} i \delta_{0} \frac{\left[\text{Co}\left(\text{aa}\right)_{2} \cdot \text{pw}_{2} \cdot \text{L}_{i}\right]}{\left[\text{L}\right]_{0}} = \alpha \sum_{i} \frac{i \delta_{0} \prod_{j} k_{j} \left[\text{L}\right]_{0}}{1 - \sum_{i} \prod_{j=1}^{i} k_{j} \left[\text{L}\right]_{0}^{i}}$$
(2)

где δ_0 средние сдвиги в комплексах, k_j —ступенчатые константы устойчивости ([Co(aa)_2·py_2]/[L]_0= α <1). Величины $\delta_{\rm skcn}^{\rm C}$ и $(1/\pi T_2)_{\rm sscn}$ (уширение линии п.м.р. внешнесферной координацией) во всех случаях изменялись пропорционально $\delta_{\rm skcn}^{\rm H}$. Во всех случаях—наблюдаемые концентра-

L	$-\delta_{\theta}^{H}$ $-\delta_{\theta}^{C}$		(Т2-1)0, гц	K _I	K_2	$-\Delta H_1$	$-\Delta H_2$	$-\Delta S_1$	$-\Delta S_2$
	м.д.			л/моль		ккал/моль		a.e.	
CHCl ₃ CH ₂ Cl ₂	50±5 28±3	25±3 28±3,5	400±100 200±50	3,6 4,6	5 4,8		10±1 12±2	$20\pm 5 \\ 20\pm 5$	35±5 40±6

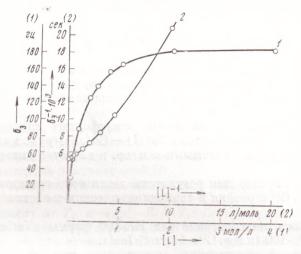


Рис. 1. Концентрационная зависимость парамагнитного сдвига протонов хлороформа: $\alpha = 1,9 \cdot 10^{-2}$, $f_0 = 100$ Мгц при 20° С. Точки — эксперимент, сплошная кривая — результат расчета на ЭВМ со значениями $\delta_0^{\rm H}$, K_1 , K_2 из табл. 1

ционные зависимости парамагнитных сдвигов не удается описать в предположении n=1 (см. рис. 1, 2; при n=1 наблюдалась бы прямая линия (3)), но они количественно описываются, если принять n=2. Кроме того, значения $\delta_{\rm akcn}^{\rm H} = n\delta_0^{\rm H}\alpha$, $\delta_{\rm akcn}^{\rm C} = n_0\delta_0^{\rm C}\alpha$, $(T_2^{-1})_{\rm akcn} = n(T_2^{-1})_{\rm o}\alpha$ в области плато по [L], тоже удается количественно согласовать друг с другом только в предположении n=2 ($\delta_0^{\rm H}$, $\delta_0^{\rm C}$ и (T^{-1}_2), — средние сдвиги и ширина линии я.м.р. лигандов L в комплексе). Значения параметров $\delta_0^{\rm H}$, K_1 , K_2 , а также $\delta_0^{\rm G}$ и (T_2^{-1}), полученные анализом экспериментальных данных с помощью ЭВМ в предположении n=2 суммированы в табл. 1. Из измерений при разных температурах (CHCl₃ 20—110°, CH₂Cl₂ 20—80°) были оценены энтальнии и энтропии комплексообразования.

Дополнительные эксперименты показали, что контактные химические сдвиги протонов $\mathrm{CHCl_3}$ и $\mathrm{CH_2Cl_2}$ во второй сфере магнитнопзотропных комплексов $\mathrm{Cr}(\mathrm{aa})_3$ и $\mathrm{Ni}(\mathrm{aa})_2\mathrm{py_2}$ не превышают 5 м.д. Оценки по формулам работы (*) показывают, что при $|\delta_0^{\mathrm{H}}| \approx 5$ м.д. вкладом $(T_2^{-1})_0^{\mathrm{K}}$ контактного взаимодействия в $(T_2^{-1})_0$ для $\mathrm{Co}(\mathrm{aa})_2\mathrm{py_2}$ также можно пренебречь. Как видим, наблюдаемые значения δ_0 и $(T_2^{-1})_0$ для $\mathrm{CHCl_3}$ и $\mathrm{CH_2Cl_2}$ в случае $\mathrm{Co}(\mathrm{aa})_2\mathrm{py_2}$ должны быть обусловлены преимущественно диполь-дипольным взаимодействием электронов и ядер. Следовательно, на основании этих параметров можно судить о взаимном расположении $\mathrm{Co}(\mathrm{aa})_2\mathrm{py_2}$ и L в аддуктах. Однако количественную информацию о геометрии аддуктов можно получить, только сделав ряд дополнительных предположений об их строении. Справедливость некоторых из них впоследствии может быть проверена на основании возможности согласовать в их рамках абсолютные значения δ_0^{H} , δ_0^{C} и $(T_2^{-1})_0$, а также на основании рассмотрения молекулярных моделей.

Обозначим через $r_{\rm H}$, $r_{\rm C}$ расстояния между атомом металла и атомами водорода и углерода внешнесферно координированных лигандов, а через $\phi_{\rm H}$ и $\phi_{\rm C}$ углы между векторами $r_{\rm H}$, $r_{\rm C}$ и осью симметрии ${\rm Co}\,(aa)_2{\rm py}_2$. При-

мем, что эти параметры одинаковы для обеих молекул L в комплексе. Тогда уравнения

$$P(3\cos^2\varphi_{\rm H,C}-1)/r_{\rm H,C}^{\rm s}=\delta_{\rm dR}^{\rm H,C}=\delta_{\rm 0}^{\rm H,C}$$

дают нам геометрические места точек в координатах $\{r, \varphi\}$, в которых псевдоконтактный сдвиг равен δ_0^H и δ_0^G . Коэффициент $P{=}2400~\text{Å}^3$ вычислен по методике (7) из величин химических сдвигов для протонов пиридина в комплексе $\text{Co}(\text{aa})_2\text{py}_2$ с CHCl_3 . Кроме того, из величины $(T_2^{-1})_0$ можно найти расстояние r_H по следующей формуле (4):

$$(T_2^{-1})_0 = \frac{4}{3} s(s+1) \frac{g^2 \beta^2 g_N^2 \beta_N^2 \tau_c}{\hbar^2 r_{\text{H}}^6}$$
(4)

Здесь s — спин комплекса, g и g_N — g-факторы комплекса и протона соответственно, β — электронный и β_N — ядерный магнетоны Бора, \hbar — посто-

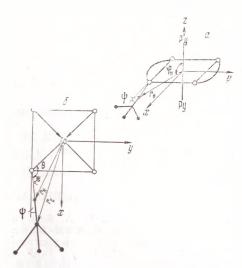


Рис. 2. Наиболее вероятная структура внешнесферного комплекса $Co(aa)_2py_2$ с $CHCl_3$; a — общий вид, δ — вид в плоскости XY. r_H =3,7, r_C =4,7, r_{OH} =2,1 Å; ψ =5°; θ =130°

янная Планка, а τ_c — время релаксации электронного спина. Произведение

 $g^2 \tau_c$ вычислено нами из данных (6).

Протоны внешнесферно координированных молекул должны лежать на кривой пересечения двух поверхностей: сферы с радиусом $r_{\rm H}$, определяемым (4), и тороидом, описываемым (3). Для случая хлороформа получаем, например, $r_{\rm H}$ =3,7±0,1 Å и φ =90±10°. Естественно предположить, что центрами внешнесферной координации являются атомы кислорода ацетилацетона, образующие химические или ван-дер-ваальсовы связи с атомом водорода CHCl₃ и CH₂Cl₂. Это предположение согласуется с полученными значениями $|\delta_0^{\rm H}| > |\delta_0^{\rm C}|$ п φ =90°. Кроме того, естественно ожидать, что атом С хлороформа будет лежать на одной прямой со связью О . . . H (т. е. $\varphi_{\rm C}$ = $\varphi_{\rm H}$ =90°), так как при этом отталкивание между атомами О и С будет минимальным. В предположении $\varphi_{\rm C}$ =90° из величины $\delta_0^{\rm C}$ находим $r_{\rm C}$ =4,7± ±0,1 Å, а из сопоставления разности $r_{\rm C}$ - $r_{\rm H}$ с длиной связи С-H (~1,1 Å) — угол между линией О . . . H – С и осью x (ψ =5°).

Полученная таким образом наиболее вероятная структура комплекса $Co(aa)_2py_2$ с $CHCl_3$ изображена на рис. 2. В то же время, в предположениях n=1 или существенной неэквивалентности лигандов при n=2 получаются меньшие значения $r_{\rm H}$ и $r_{\rm C}$ для одного из лигандов, которые невозмож-

ны из-за стерических препятствий.

Структура внешнесферного комплекса CH_2Cl_2 с $Co(aa)_2py_2$, по-видимому, близка к структуре комплекса $CHCl_3$. Действительно, в этом случае величины δ_0^H и $(T_2^{-1})_0$ должны быть примерно вдвое меньше, чем для $CHCl_3$ (как это и наблюдается) из-за усреднения по двум неэквивалентным положениям протона, одно из которых находится существенно дальше от металла, чем другое. Этот вывод подтверждается также совпадением величин δ_0^G для CH_2Cl_2 и $CHCl_3$.

Обращают на себя внимание большие (по сравнению с энергиями водородных связей $CHCl_3$ и CH_2Cl_2 $\Delta H \le 4$ ккал/моль (7)) значения энтальпий ΔH_1 и, особенно, ΔH_2 . По-видимому, связь молекул $CHCl_3$ и CH_2Cl_2 с атомами кислорода $Co(aa)_2$ ру $_2$ является частично ковалентной. Интересно отметить, что в результате внешнесферной координации $CHCl_3$ и CH_2Cl_2 химический сдвиг C-H протона ацетилацетона в $Co(aa)_2$ ріре $_2$ заметно изменяется (на ~ 12 м.д.).

Таким образом, внешнесферная координация молекул хелатами переходных металлов является, по-видимому, более сильным по энергетике процессом, чем образование водородных или ван-дер-ваальсовых связей. На этом основании можно полагать, что внешнесферные аддукты могут играть роль в катализе металлокомплексами и, в частности, в процессах, затрагивающих связи С—Н, а также в других реакциях этих соединений в растворах.

Авторы выражают благодарность Г. А. Сенюковой и В. М. Некипелову

за помощь в работе.

Институт химической физики Академии наук СССР Москва Поступило 18 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. N. Shupik, G. A. Senjukova et al., Phys. Letters, 41A, 227 (1972).

² A. Керрингтон, Э. Мак-Лечлан, Магнитный резонанс и его применение в химин, М., 1970.

³ Г. М. Булгакова, А. Н. Шупик и др., ДАН, 199, № 2, 376 (1971).

⁴ W. D. Phillips, D. R. Eaton, Advances in Magnetic Resonance, 1, N. Y.—London, 1965.

⁵ Ю. Н. Молин, Докторская диссертация, Новосибирск, 1970.

⁶ G. N. La Mar, J. Magnetic Resonance, 1, 185 (1969).

⁷ G. R. Willey, S. I. Miller, J. Am. Chem. Soc., 94, № 10, 3287 (1972).