УДК 553.061.6

ГЕОХИМИЯ

В. С. ГОЛУБЕВ, Е. Ф. ПОШЕХОНОВ, Г. И. РОССМАН

О ДЛИТЕЛЬНОСТИ СОВРЕМЕННОГО ЭПИГЕНЕТИЧЕСКОГО РУДООБРАЗУЮЩЕГО ПРОЦЕССА НА ПОДВИЖНОМ ВОССТАНОВИТЕЛЬНОМ БАРЬЕРЕ

(Представлено академиком В. И. Смирновым 5 III 1973)

В настоящей работе рассмотрена длительность рудообразования в предположении непрерывного процесса формирования рудного ролла на подвижном восстановительном барьере пластового потока кислородсодержащих вод, которые содержат первичную концентрацию урана $C_0 = n \cdot 10^{-5}$ г/л и образуют современную рудную залежь с концентрацией $q_{\text{max}}=0.5\%$.

Восстановительные геохимические барьеры, возникающие в зоне гипергенеза при смене окислительных условий на восстановительные, играют существенную роль в концентрации ряда элементов с переменной валентностью (1). В частности, формирование экзогенных эпигенетических месторождений происходит при инфильтрации кислородных подземных вод, которые содержат рудные компоненты (молибден, уран, селен и др.), в пластах горных пород, содержащих минералы-восстановители и органическое вещество. В результате окисления минералов и органического вещества концентрация растворенного кислорода уменьшается, и в водах формируется восстановительный геохимический барьер, на котором происходит восстановление рудных компонентов в растворе с последующим зыпадением в осадок и формированием оруденения. Характерная особенность рассматриваемого геохимического барьера заключается в том, что он перемещается вместе с фильтрующимися водами.

Это существенно изменяет закономерности динамики процесса по

сравнению с рудообразованием на неподвижном барьере $\binom{2}{3}, \binom{3}{4}$.

Динамика эпигенетического рудообразования на подвижном восстановительном барьере обсуждалась рядом авторов (4-6) для вариантов стационарного и нестационарного процесса.

Согласно (2,4), распределение концентрации рудного компонента в мешковой (нерасчлененной и наиболее богатой) части рудной залежи по направлению фильтрации раствора (ось х) характеризуется в любой момент времени t следующей зависимостью:

$$q = k \left(C_0 + \frac{kC_H}{u} x_0 \right) \left(t - \frac{x}{u} \right) e^{-\frac{k}{u} (x - x_0)}, \tag{1}$$

где x_0 — координата восстановительного барьера (4), u — действительная скорость фильтрации, C_{o} — концентрация рудного компонента в окисленной форме в исходном растворе, поступающем в область рудоотложения при $\hat{t}=0$, $C_{\rm H}$ — растворимость рудного компонента в восстановленной форме, k — константа скорости процесса рудоотложения. Все концентрации выражаются в граммах на единицу объема породы. Распределение концентрации компонента в окисленной форме в растворе дается выражением (2, 4)

$$C = \left(C_0 + \frac{kC_H}{u}x_0\right)e^{-\frac{k}{u}(x-x_0)}.$$
 (2)

Логарифмируя (1) и учитывая (2), найдем:

$$\ln q = \ln \left[kC_{\text{max}} \left(t - \frac{x}{u} \right) \right] - \frac{k}{u} (x - x_0), \tag{3}$$

где $C_{\max} = C_0 + \frac{kC_{\mathrm{H}}}{u} x_0 -$ максимальная концентрация компонента в рас-

творе на восстановительном барьере в момент t. При t=T, где T — длительность эпигенетического процесса, выражение (3) характеризует современное распределение по x рудного компонента. Так как скорость движения восстановительного барьера существенно меньше u (2 , 4), то линейные координаты оруденения $x \ll ut(uT)$. Совмещая начало координат с точкой максимальной концентрации рудного компонента (т. е. осуществляя в (3) замену независимой переменной $x'=x-x_0$ и опуская индекс штрих), получим из (3)

 $\ln q = \ln k C_{\text{max}} T - \frac{k}{n} x. \tag{4}$

Концентрационный профиль рудного компонента спримляется в полулогарифмических координатах $(\ln q, x)$, а градиент логарифма концентрации из полученной прямой линии определяется в соответствии с (4) следующим образом:

 $\lambda = 2.303 \frac{\lg kC_{\max}T - \lg q}{x} = \frac{k}{u}.$ (5)

При непзменном масштабе построения графика ($\lg q, x$) величина (λ) прямо пропорциональна тангенсу угла наклона прямой линии к оси x (7):

$$\lambda = \operatorname{tg} \alpha / 0.434 \gamma,$$
 (6)

где γ — принятый по оси ординат модуль десятичных логарифмов концентрации компонента, выраженный в линейной мере масштаба оси абсцисс.

Определяя по результатам полевых исследований скорость фильтрации и $\lambda(tg\,\alpha)$, можно в соответствии с (5) найти константу скорости рудообразующего процесса. Длительность его определяется по формуле, следующей из (4):

 $\ln kC_{\max}T = \ln q_{\max}, \tag{7}$

откуда

$$T = \frac{q_{\text{max}}}{kC_{\text{max}}} = \frac{(1-\kappa)\,q_{\text{max}}}{\kappa kC'_{\text{max}}} \tag{8}$$

где q_{\max} — максимальная концентрация рудного компонента (при x=0), \varkappa — пористость вмещающих пород, q'_{\max} , C'_{\max} — объемные концентрации рудного компонента. Множитель $\left(\frac{1-\varkappa}{\varkappa}\right)$ служит для перехода от концентраций компонентов q_{\max} , C_{\max} , отнесенных к единице объема нороды в целом, к концентрациям q'_{\max} , C'_{\max} , отнесенным соответственно

Следовательно, данные, необходимые для оценки длительности эпигенетического рудообразующего процесса, можно получить при изучении распределения концентрации компонента в оруденении с привлечением результатов гидрогеологических и гидрогеохимических исследований.

к долям объема жидкой и твердой фаз в единице объема породы.

В качестве объекта исследования была выбрана рудная залежь ролло-образной формы, расположенная на выклинивании зоны пластового окис-

ления. Общие черты таких залежей приводятся в ряде работ (8 , 9). Было установлено, что зависимость логарифма средних концентраций по скважинам от ширины мешковой части залежи (т. е. зависимость $\ln q = f(x)$ в принятых выше обозначениях) в пределах контура балансовых руд близка к линейной. Градиент этой линейной зависимости оказался равным $\lambda = 0.014$ м $^{-1}$. Рудовмещающий водоносный горизонт характеризуется следующими осредненными параметрами: u = 5 м/год, $\kappa = 0.3$ (песчаные отложения). Объемный вес пород в воздушно-сухом состоянии $\rho = 1.8$ г/см 3 .

По данным геохимических и гидрогеохимических исследований (8 , 9), $q_{\text{max}}=0.5\%$; $C_{\text{max}}=n\cdot 10^{-3}$ г/л (n<5). Подставляя эти значения с учетом

размерностей в расчетные формулы (5), (8), мы нашли *

$$k=\lambda u=n\cdot 10^{-2}$$
 год⁻¹; $T=n\cdot 10^{-5}$ лет.

Длительность рудообразования на современном восстановительном барьере имеет тот же порядок, что и оцениваемая радиогеохимическими методами (10). Такое совпадение свидетельствует о том, что развитая в (2,4) теория динамики эпигенетического рудообразования правильно отражает существенные закономерности рассматриваемого современного процесса.

Из полученных результатов можно сделать важное заключение: использование аналогичной методики применительно к рудообразующим палеопроцессам (11) должно приводить к объективным оценкам длительно-

сти рудообразования.

1.50

Аналогичный подход может быть применен для определения ряда других величин, характеризующих геневис месторождений, в частности концентраций рудных элементов в минералообразующем растворе. Так, для рассматриваемого случая, полагая на основе радиогеохимических определений длительность формирования рудной залежи $n \cdot 10^5$ лет, по формуле (8) находим $C_{\rm max} \cdot 10^{-3}$ г/л, что совпадает с наблюдаемой величиной. Если оруденение сформировано в прошлом, то порядок величины длительности его образования, необходимой для расчета концентраций рудных компонентов в растворе, может быть оценен на основе геологических исследований.

Если же считать, что фронт зоны пластового окисления наступал на уже сформированную рудную залежь с образованием переотложенных по пластовому потоку рудных роллов, то длительность формирования последних должна рассчитываться на основе другой модели.

Поступило 28 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Перельман, Геохимия эпигенетических процессов. Зона гипергенеза, 1968. ² В. С. Голубев, А. А. Гарибянц, Гетерогенные процессы геохимической миграции, 1968. ³ В. С. Голубев, Геол. журн. УССР, 29, № 5 (1969). ⁴ В. С. Голубев, Динамика физико-химических и геохимических процессов, Автореф. докторской диссертации, М., 1970. ⁵ Е. Ф. Пошехонов, В сборн. Кинетика и динамика геохимических процессов, М., 1971. ⁶ А. И. Германов, А. А. Ярошевский, В сборн. Кинетика и динамика геохимических процессов, М., 1971. ⁷ А. П. Соловов, Геол. рудн. месторожд., № 3 (1966). ⁸ М. Ф. Каширцева, Методы изучения эпигенетических изменений в рыхлых осадочных породах, 1970. ⁹ Е. М. Шмариович, В сборн. Состояние и задачи советской литологии, 2, «Наука», 1970. ¹⁰ К. Е. Иванов, Р. Г. Кудряшова, В сборн. Вопросы прикладной радиогеологии, М., 1963. ¹¹ Е. Д. Астрахан, В. С. Голубев, Г. И. Россман, Зап. Всесоюзн. мин. общ., 100, № 4 (1971).

^{*} Рассматриваемая одномерная модель рудообразования не учитывает поперечной диффузии в слабопроницаемые породы, вмещающие рудоносный горизонт. Если поперечная диффузия имеет существенное значение, то найденная величина k является эффективной константой, учитывающей размывание концентрационного фронта за счет конечной скорости реакции восстановления урана и поперечной диффузии.