УДК 548.736

КРИСТАЛЛОГРАФИЯ

А. В. ГОНЧАРОВ, Е. Н. КУРКУТОВА, В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

О КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ 9-ОКСА-3,7-ДИТИАБИЦИКЛО[3.3.1]НОНАНА

Объекты нашего исследования — неограненные обломки монокристаллов игольчатого габитуса диаметром 0,2 мм и длиной 0,4 мм, любезно предоставлены нам Н. С. Зефпровым и С. В. Рогозиной (1). В моноклинной ячейке a=8,71; b=10,21; c=8,98 Å, $\gamma\approx105^\circ$ при плотности 1,42 г/см3 содержится Z=4 формульных единиц $C_6H_{10}OS_2$. Зональные и сериальные погасания достаточно уверенно характеризуют федоровскую группу (ф. г.) P2,/b.

 $\begin{tabular}{ll} T аблица 1 \\ $Koopдuнаты базисных атомов структуры $C_6H_{10}OS_2$ \\ и индивидуальные тепловые факторы B_i \\ \end{tabular}$

Атом	x/a	y/b	z/c	B_j	Атом	x/a	y/b	z/c	B_j
$C_1 \\ C_2 \\ S_3 \\ C_4$	0,575 0.692 0,832 0,076	0,183 0,143 0.062 0,297	0,028 0.149 0.065 0,421	1,43 1,40 2,00 2,20	$C_5 \\ C_6 \\ C_7 \\ C_8 \\ O_9$	0,209 0,195 0,763 0,565 0,373	0,262 0,109 0,456 0,335 0,337	0,331 0,329 0,009 0,043 0,377	1,53 1,34 1,43 1,65 0,73

Таблица 2

Таблица 3

Длины связей в молекуле C₆H₁₀OS₂, Å

Валентные	углы	В	молекуле	$C_6H_{10}OS_2$

Связь	Длина	Связь	Длина
C_1-C_2 C_3 O_3' C_2-S_3 S_3-C_4'	1.61	C ₄ '—C ₅ '	1,53
	1.58	C ₅ '—C ₆ '	1.54
	1.46	O ₉ '	1.49
	1.80	C ₆ '—S ₇	1.81
	1.89	S ₇ —C ₈	1.86

Угол	ω	Угол	ω
$\begin{array}{c} C_1 - C_2 - S_3 \\ C_1 - O_9' - C_{5}' \\ C_1 - C_8 - S_7 \\ C_2 - S_3 - C_4' \\ C_2 - C_1 - C_8 \\ C_2 - C_1 - O_9' \end{array}$	112°,8 118,7 111,2 97,5 113,1 110,0	$ \begin{vmatrix} S_3 - C_4' - C_5' \\ C_5' - C_6' - S_7 \\ C_6' - S_7 - C_3 \\ C_6' - C_5' - O_9' \\ C_8 - C_1 - O_7' \\ C_4' - C_5' - O_9' \end{vmatrix} $	113,4

 Π римечание. Здесь и в табл. 4 цитрихом обозначены атомы, связанные с базисными осью 2_1 .

Экспериментальный материал составили 630 ненулевых отражений 0kl-5kl, hk0-hk4 (рентгенгониометр Вейсенберга, MoK_{α} -излучение, $\max\frac{\sin\theta}{\lambda}=0.62\,\text{Å}^{-1}$), интенсивности которых были оценены визуально

по шкале марок почернения с шагом 2%.

Трехмерная функция Патерсона P(uvw) расшифрована по методу ромбов $\binom{2,3}{3}$, с применением для отыскания ромбов и базисных отрезков

(а затем и основной системы) функций минимализации (4). Последующая серия синтезов Фурье зафиксировала все независимые атомы структуры. Уточнение методом наименьших квадратов привело на данном этапе к R=0.14 при $B_{bbl}=1.04$ Å².

Заключительные координаты атомов, значения длин связей и валентных углов сведены в табл. 1—3. Полученные значения С—С=1,61—1,53; О—С=1,49—1,46; S—С=1,89—1,80 Å в молекуле (рис. 1) удовлетворительно согласуются с уже известными ($^{5-7}$). Средние значения как расстояний С—С(1,58 Å), так и валентных углов с вершиной у атома С(111,5°) близки к данным, опубликованным для соединений бицикло[3.3.1] нона-

новой системы. Плоские фрагменты молекулы (рис. 1), так же как и отклонения отдельных ее атомов от плоскостей, можно описать

системой уравнений (табл. 4).

Молекула $C_6H_{10}OS_2$ здесь принимает конформацию кресло-ванна. Включающий атомы S_3 и O_9 ′ гетероцикл имеет форму сильно искаженной ванны, поскольку отклонения этих атомов от средней плоскости, образующей дно ванны, существенны: 0.95 и 0.61 Å соответственно. Для сравнения отметим, что в молекулах (1) $C_{15}H_{16}BrNO_2$ (5) и (2) $C_{15}H_{18}BrNO_2$ (6) деформация ванны менее выражена и отклонения атомов C_3 и C_3 от средней плоскости составляют 0.64 и 0.68 Å.

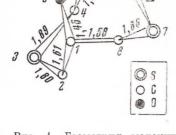


Рис. 1. Геометрия молекулы C₆H₁₀OS₂

По-видимому, увеличение искажения гетероцикла в $C_6H_{10}OS_2$ связано с чисто стери-

ческими факторами (также и с конформационными особенностями этого соединения) из-за замены связей $C_1 - N_9$ и $C_2 - C_3$ на C - O и C - S.

Плоскости, проходящие через атомы C_6' , S_7 , C_8 (рис. 1) и C_2 , S_3 , C_4' , пересекают плоскость, в которой лежат атомы C_4 . O_9' , C_5' , под углами

Таблина 4

Уравнения средних плоскостей и отклонение (от) от них выбранных атомов

5,91x + 6,46z		$\begin{array}{c c} 0,27x + 9,26y + 2,85z - \\ -1,66 = 0 \end{array}$		
Атомы σ, А		Атомы	σ, Å	
$\left\{ \begin{array}{l} C_1 \\ C_5 \\ C_6' \\ C_8' \\ S_7 \\ O_9' \end{array} \right.$	+0.01 -0.01 +0.01 -0.01 0.90 -0.66	$ \left\{ \begin{array}{l} C_1 \\ C_2 \\ C_4' \\ C_5' \\ S_3 \\ O_9' \end{array} \right. $	0.00 0.00 0.00 0.00 0.00 0.95 0.61	

Примечание. Фигурной скобкой обозначены атомы, через которые проведена плоскость.

11°45' и 76°9'. Последний угол на 5°37′ больше, чем аналогичный в идеальной ванне с тетраэдрическими углами. Это искажение в свою очередь характеризуется расстоянием O_9 ... S_3 , увеличенвым до 2,84 Å по сравнению средены значением № Са, равным 2,59 Å, в (⁵, ⁶). Также повышенное значение средней величины (110,9°) валентных углов у атомов углерода, образующих дно ванны, по сравнению с таковым (109,8°) для молекул (1) и (2) в (5, 6), можно считать указанием на напряженность конформации ванны в C₆H₁₀OS₂.

У циклогексанового кольца с

атомами O_9 ′ и S_7 конформация искаженного кресла; отклонения этих атомов от средней плоскости C_4C_5 ′ C_6 ′ C_8 составляют 0,66 и 0,90 Å, что несколько отличается от смещения N_9 и C_7 (соответственно 0,67 и 0,64 Å) в $(^5,^6)$, и тем самым указывают на большее искажение кресла в молекуле $C_6H_{10}OS_2$ по сравнению с такой же конформацией N_9 и C_7 в молекулах (1) и (2) $(^5,^6)$.

Размещение дискретных молекул в элементарной ячейке показано на рис. 2. На независимую часть ячейки приходится одна молекула, остальные получаются из исходной операциями симметрии данной ф.г. Межмо-

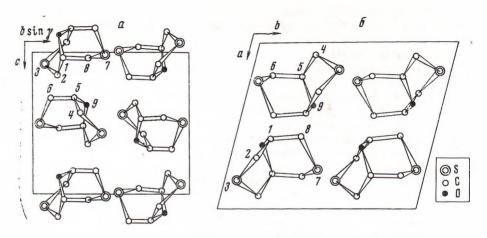


Рис. 2. Проекции структуры $C_6H_{10}OS_2$. a — на плоскость (001), δ — вдоль оси a

лекулярные расстояния, отражающие взаимодействие молекул, в основном превышают сумму соответствующих ван-дер-ваальсовых радиусов. Аномально коротких контактов в структуре нет.

Владимирский государственный педагогический институт им. П. И. Лебедева-Полянского

Поступило 20 VIII 1973

Институт кристаллографии им. А. В. Шубникова Академии наук СССР Москва

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. С. Зефиров, С. В. Рогозина, Л. А. Волкова, ЖОХ, 8, 216 (1972). ² Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, ДАН, 192, 86 (1970). ³ Э. А. Кузьмин, В. П. Головачев и др., Кристаллография, 18, 54 (1973). ⁴ В. И. Лютин, Э. А. Кузьмин и др., Структура и свойства кристаллов, Владимир, 1973. ⁵ P. D. Cradwick, G. A. Sim, J. Chem. Soc. B, 1971, 2218. ⁶ C. Tamura, G. A. Sim, J. Chem. Soc. B, 1968, 1241. ⁷ Y. Kai, N. Yasouoka et al., Chem. Commun., № 23, 1532 (1971).