УДК 535.379

ФИЗИЧЕСКАЯ ХИМИЯ

Е. Б. ГОРДОН, М. С. ДРОЗДОВ, Ю. Л. МОСКВИН член-корреспондент АН СССР В. Л. ТАЛЬРОЗЕ

О ПРИРОДЕ У.-Ф. ИЗЛУЧЕНИЯ ПРИ САМОВОСПЛАМЕНЕНИИ СМЕСЕЙ CS₂ и O₂

В результате исследований энергетических и спектральных характеристик излучения при цепном самовоспламенении смесей сероуглерода с кислородом было показано (1), что за излучение в и.-к. области спектра ответственны колебательные переходы молекулы CO_2 ($\lambda \approx 4,5$ и 2,7 μ), а свечение в у.-ф. области спектра, в согласии с результатами исследования низкотемпературных пламен сероуглерода (2, 3), скорее всего обусловлено реакцией радиационной рекомбинации радикала SO с атомом О. Спектр излучения при самовоспламенении смеси с $\alpha \approx [O_2]/[CS_2]=4$ и начальном давлении $P_n=0,3$ атм. представлен на рис. 1. (Спектр не исправлялся на спектральную чувствительность фотопластинки УФІІІ.)

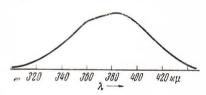


Рис. 1. Спектр излучения при варыве смеси CS_2+4O_2 ($P_R=0,3$ атм.)

Калориметрические измерения для приведенных условий дают выход у.-ф. излучения ν_{у.-ф}. равный ¹/200 кванта (λ~370 мµ) на молекулу СS₂. Одновременно нами оценивалась температура в процессе самовоспламенения и остывания смеси (по импульсу избыточного давления). Для смесей состава, близкого к стехиометрическому (α≥3), температура достигает величины 3500—4000° К. В. Н. Кондратьевым (²) исследовалось

у.-ф. свечение в разбавленных пламенах сероуглерода при 400° К. Им было доказано, что интенсивность излучения резко неравновесна из-за больших концентраций радикалов SO и O, образующихся в процессе цепной разветвленной реакции. Выход излучения на одну молекулу CS_2 по данным CS_2

(2) составлял ~1/40 и уменьшался при повышении температуры.

Таким образом, квантовые выходы излучения для разреженных пламен малого давления ($P_{\rm H}{=}1{-}3$ тор) и для воспламенения богатой смеси большого давления ($P_{\rm H}{=}0,3{-}1,2$ атм.) оказываются близкими. В первом случае отношение эффективной бимолекулярной константы скорости радиационной рекомбинации ${\rm SO}{+}O{\to}{\rm SO}_2{+}h\nu$ (k_r) к произведению тримолекулярной константы скорости обычной рекомбинации ${\rm SO}{+}O{+}M{\to}{\rm SO}_2{+}M$ ($k_{\rm pek}$) на суммарную концентрацию M составляет ${\sim}0,1$ и высокая интенсивность излучения согласуется с принятыми представлениями о механизме радиационной рекомбинации (4). Однако при больших давлениях и температуре, характерных для наших экспериментов, указанное отношение на $3{-}4$ порядка меньше и поэтому для объяснения наблюдаемой эффективности в рамках рекомбинационной модели излучения необходимо предположить многократное использование активных частиц ${\rm SO}$ и ${\rm O}$ и, значит, обратимость процесса рекомбинации ${\rm SO}{+}O{+}M{\rightleftharpoons}{\rm SO}_2{+}M$.

Более того, поскольку при высоких температурах (3500—4000° K) равновесные концентрации свободных радикалов и атомов весьма высоки, неравновесность по концентрациям в подобных условиях из энергетических соображений не может быть значительной (5). Для подтверждения

этого нами была рассчитана зависимость от начального давления мощности хемилюминесценции с единицы объема, обусловленной равновесными концентрациями SO и О при температуре адиабатического сгорания, которая далее сравнивалась с экспериментально измеренной.

Сначала были проведены расчеты по определению равновесного состава продуктов горения сероуглерода при α=4 для различных давлений и температур. При этом предполагалось, что основными компонентами после сгорания смеси являются CO₂, SO₂, O₂, CO, SO, O, поскольку концентрации

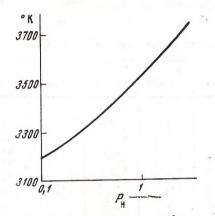


Рис. 2 Зависимость адиабатической температуры сгорания от начального давления смеси ${\rm CS_2+4O_2}$

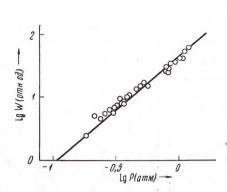


Рис. 3. Зависимость энергии излучения от начального давления смеси $\mathrm{CS}_2{}^{+}4\mathrm{O}_2$. Точки — экспериментальные, сплошная линия — расчетная

других частиц в исследуемом диапазоне давлений и температур пренебрежимо малы.

Расчет основывался на законах термодинамического равновесия в реакциях

 $SO_2 \rightleftharpoons SO_1 + 1/2O_2$: $O_2 \rightleftharpoons 2O$: $CO_2 \rightleftharpoons CO_1 + 1/2O_2$

и условии сохранения числа атомов C, S, O. Константы равновесия перечисленных реакций вычислялись по данным (6). Результаты расчета для различных начальных давлений и конечных температур смесей приведены в табл. 1.

Максимальная конечная температура смеси (соответствующая ее адиабатическому сгоранию) определялась графическим методом с использованием теплот образования и теплоемкостей компонентов (6) в соответствии с результатами табл. 1. На рис. 2 представлена зависимость максимальной температуры после сгорания смеси от ее начального давления. В диапазоне $P_{\rm H}=10^{-1}-10$ атм. максимальная температура с достаточной точностью зависит линейно от $\lg (P_{\rm H})$

$$T_{\text{max}} \, ^{\circ} \text{K} \simeq 3500 + 320 \, \text{lg} \, P_{\text{H}} (\text{atm}).$$
 (1)

Рядом авторов было показано, что интенсивность рекомбинационного излучения формально описывается бимолекулярной константой скорости k_r (4). Для интересующего нас процесса интегральная по спектру интенсивность излучения $I=k_r[SO][O]$.

Нетрудно показать, что произведение концентраций рекомбинирующих частиц равно

[SO][O]=
$$L^2 \frac{T_0}{T} \frac{2P_{\text{H}}}{\alpha+1} k_2 \sqrt{k_1} / \left(1 + \frac{X_{\text{SO}}}{X_{\text{SO}}}\right),$$
 (2)

тде L — число Лошмидта; T_0 — начальная температура смеси; K_2 и K_1 — константы равновесия процессов SO_2 \rightleftharpoons SO + $^1/_2O_2$ и O_2 \rightleftharpoons 2O соответственно.

Отсюда следует, что основная зависимость величины [SO][O]/ $P_{\rm H}$ от $P_{\rm H}$ связана с ростом адиабатической температуры сгорания смеси при увеличении начального давления, поскольку множитель $[1+X_{\rm SO}/X_{\rm SO_2}]^{-1}\sim 1$, как это следует из табл. 1.

Используя (1), находим

$$[SO] \cdot [O] \sim P_{\mathrm{H}}^{1,7}. \tag{3}$$

Так как константа скорости радиационной рекомбинации с ростом температуры изменяется значительно слабее, чем константа равновесия, то и

 $\begin{tabular}{ll} T аблица 1 \\ P авновесный состав продуктов горения сероуглерода ($\alpha=4$) \\ \end{tabular}$

<i>T</i> , °K	P _H (aTM _e)	$P/P_{ m H}$	$x_0 = P_0/P$	$\chi_{SO} = P_{SO} P$	$ \chi_{\text{CO}} = P_{\text{CO}}/P $	$\begin{vmatrix} \chi_{O_2} = \\ = P_{O_2}/P \end{vmatrix}$	$\begin{vmatrix} x_{SO_2} = \\ = P_{SO_2}/P \end{vmatrix}$	$\begin{vmatrix} \chi_{\text{CO}_2} = \\ = P_{\text{CO}_2}/P \end{vmatrix}$
2500	0,147	6,7	0,007	0,007	0,012	0,255	0,485	0,234
i	0,585	6,7	0,004	0,003	0,008	0,255	0,491	0,239
	2,38	6,7	0,002	0,002	0,004	0,254	0,494	0,244
	14,8	6,7	0,001	0,001	0,002	0,255	0,495	0,246
3000	0,105	8,8	0,06	0,058	0,087	0,268	0,390	0,137
	0,440	8,5	0,05	0,033	0,059	0,265	0,443	0,179
	1,85	8,3	0,015	0,017	0,034	0,262	0,465	0,207
3500	12,0	8,1	0,06	0,007	0,012	0,256	0,485	0,234
	0,088	12,6	0,222	0,163	0,136	0,235	0,199	0,045
	0,354	11,2	0,124	0,118	0,127	0,252	0,298	0,081
4000	1,40	10,5	0,067	0,073	0,097	0,270	0,369	0,124
	9,36	9,4	0,028	0,036	0,059	0,285	0,422	0,170
	0,106	17,2	0,401	0,226	0,140	0,137	0,082	0,014
	0,325	15,6	0,290	0,199	0,142	0,197	0,143	0,029
	1,12	14,2	0,186	0,154	0,133	0,253	0,220	0,054
	7,30	12,4	0,082	0,092	0,107	0,276	0,336	0,107

интенсивность излучения при рекомбинации SO и O должна описываться той же зависимостью (3).

На рис. З представлены результаты калориметрических измерений энергии излучения в области λ 340—420 м μ в зависимости от начального давления смеси. Длительность импульса свечения, как показали эксперименты, весьма слабо зависит от начального давления (τ =4—5 мсек.), поэтому энергия излучения должна меняться по тому же закону $W \sim P_{\rm H}^{1,7}$. Из рис. З следует, что термодинамическая зависимость $W \sim P_{\rm H}^{1,7}$ (сплошная линия) хорошо описывает экспериментальные результаты *.

На основе абсолютных измерений интенсивности излучения была оценена константа скорости радиационной рекомбинации $k_r \simeq 10^{-17}$ см³/сек. Из литературных данных известна константа скорости этой реакции при комнатной температуре $k_r = 5 \cdot 10^{-15} - 7 \cdot 10^{-16}$ см³/сек (7) и в интервале $T = 300 - 1500^\circ$ К $k_r = 3 \cdot 10^{-12} \cdot T^{-1,6}$ (8). Экстраполяция результатов работы (8) до $T \simeq 3000^\circ$ дает величину $k_r = 0.8 \cdot 10^{-17}$ см³/сек.

Совокупность приведенных результатов указывает на то, что у.-ф. излучение во взрыве сероуглерода с кислородом связано в основном с равновесными концентрациями SO и O, соответствующими температуре взрыва. Однако следует подчеркнуть, что поток излучения с единицы поверхности при этом может заметно превышать равновесное значение из-за различия между электронной, колебательной и поступательной температурами.

Проведенное рассмотрение показывает, что высокотемпературный взрыв газовых смесей, в которых принимает участие интенсивный хеми-

^{*} Отметим, что о зависимости, близкой к $W \sim P^2$ для континуума пламени СО (где свечение, как известно, обусловлено фоторекомбинацией СО+О), сообщалось в (9).

люминесцентный процесс, должен приводить к значительному излучению в спектральном диапазоне, характерном для этого процесса. Этот факт позволяет рассматривать «химические лампы», основанные на взрыве газовых смесей большого давления, в качестве источников высокоинтенсивного излучения в различных областях спектра.

Институт химической физики Академии наук СССР Москва Поступило 27 VII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. Б. Гордон, М. С. Дроздов и др., Физика горения и взрыва, 9, № 6 (1973). ² В. Н. Кондратьев, ЖФХ, 14, 281 (1940). ³ А. Sharma, J. Padur, P. Warneck, J. Chem. Phys., 43, 2155 (1965). ⁴ Возбужденные частицы в химической кинетике, под ред. А. А. Борисова, М., 1973. ⁵ А. Гейдон, Спектроскопия пламен, ИЛ, 1959. ⁶ Справочник химика, под ред. Б. Н. Никольского, 1, 3, 1971. ⁷ В. Н. Кондратьев, Константы скорости газофазных реакций, «Наука», 1970. ⁸ N. Cohen, R. W. Gross, J. Chem. Phys., 50, 3119 (1969). ⁹ G. J. Minkoff, A. J. Everett, H. P. Broida, Fifth Symp. Combustion, 1954, N. Y., 1955, p. 779.