УДК 547:541.124 <u>ХИМИЯ</u>

А. С. ГУДКОВА, К. УТЕНИЯЗОВ, С. Г. ЗАВГОРОДНИЙ, академик О. А. РЕУТОВ

ДЕЗАМИНИРОВАНИЕ ГИДРОГАЛОГЕНИДОВ 1-АМИНОМЕТИЛ-1-ГАЛОГЕН-И 1-АМИНО-1-(ГАЛОГЕНМЕТИЛ)-ЦИКЛОГЕКСАНОВ

Ранее было изучено $(^1,^2)$ дезаминпрование гидрохлоридов 1-аминометил-1-хлорциклогексана (I) и 1-амино-1-(хлорметил)-циклогексана (II), а также гидробромидов 1-аминометил-1-бромциклогексана (III) и 1-амино-1-(бромметил)-циклогексана (IV) азотистой кислотой при 50° . Для выявления закономерностей влияния температурных условий на способы стабилизации промежуточно образующихся карбониевых ионов в данной работе исследовано дезаминирование вышеуказанных соединений I-IV при 0° . Качественный и количественный состав продуктов реакций установлен методом г.ж.х. Полученные результаты представлены в табл. 1-4. Для сравнительного анализа приведены ранее полученные данные при 50° .

Сопоставляя полученные результаты по различным параметрам, мож-

но установить ряд закономерностей:

1. Изменение температурных условий практически не влияет на общий вклад нуклеофильных перегруппировок для первичных карбониевых ионов, однако соотношение между различными типами перегруппировок (в частности, 1,2-миграция галогена п С—С-связи) несколько изменяется и зависит от природы галогена. Для соединения I (табл. 1)

Таблица 1 Дезаминирование гидрохлорида 1-аминометил-1-хлорциклогексана (I)

Тип нерегруппи- ровки	Тип реакции	Продукты реакции	Выход, %		
			50°	0°	
Без перегруп-	S_N	V. 1-Оксиметил-1-хлорциклогексан	следы	4,8 3,3	
пировки	·	(VI. Циклогексанон	3		
	Φ*	VII. 1-Хлор-1-циклогексен	следы	следы	
1.0		VIII. 1,1-Дихлорциклогексан	следы		
1,2-миграция хло-	S_N	[IX. 1-Хлорметил-1-циклогексанол	43	45,6	
pa	- 41	Х. 1-Хлор-1-хлорметилциклогексан	11,5	6	
	E	∫XI. 1-Хлорметил-1-циклогексен	17,5	29,4 3,2	
	_	(XII. (Хлорметилен)-циклогексан	3	3,2	
	E, S_N	XIII. 1-Оксиметил-1-циклогексен	следы	_	
. Перегруппи ровка	S_N	∫XIV. Циклогептанон	13	6,3	
Демьянова	D N	XV. 1,1-Дихлорциклогептан	3,5		
	E	XVI. 1-Хлор-1-циклогентен	5.5	1,4	

^{*} Ф — фрагментация.

с повышением температуры реакции увеличивается количество продукта, образующегося при атаке конкурирующим нуклеофилом С1-, уменьшается степень перегруппировки с 1,2-миграцией хлора и увеличивается степень перегруппировки Демьянова (миграция С—С-связи). Для соединения III (табл. 3) увеличивается вклад вторичных процессов (последовательные миграции) и несколько уменьшается степень перегруппировки, сопровож-

Тип перегруппировки	Тип реакции	Продукты реакции	Выход, %	
			50°	0°
Без перегруппиров- ки Последовательно 1,2-миграция хлора и перегруп- пировка Демьяно- ва	S_N E E, S_N S_N	{ IX. 1-Хлорметил-1-циклогексанол X. Хлор-1-хлорметилциклогексан XI. Хлорметил-1-циклогексан XII. (Хлорметил-1-циклогексан XIII. (Хлорметил-1-циклогексан XIII. 1-Оксиметил-1-циклогексан XIV. Циклогентанон XV. 1,1-Дихлорциклогентан	58 11 15.5 15,5 следы следы следы	24,8 3.2 26,8 18,6 - 12,6 14,0

Таблица 3 Дезаминирование гидробромида 1-аминометил-1-бромциклогексана (III)

Тип перегруппировка	Тип реакции	Продукты реакции	Выход, %	
			50°	0°
Без перегруппиров- ки 1,2-миграция брома	$egin{array}{c} arPhi & & & & & & & & \\ S_N & & & & & & & \\ E & E, & S_N & & & & & & & \end{array}$		1,4 1,6 47 14.4 1,7 3,5	3 48.4 12.2 - 3,6
Последовательно 1,2- миграция брома и гидрида из боковой цепи из цикла Перегрупнировка Демьянова	$egin{array}{c} S_N \ S_N \ E \end{array}$	{ XXI. Циклогексилформальдегид	1,7 2,6 8,2 12,8 5,1	5,7 1,9 * 25,2

^{*} Соединению приписано строение 1-бром-2-оксиметилциклогексана.

Таблица 4 Дезаминирование гидробромида 1-амино-1-бромметилциклогексана (IV)

Тип перегруппировки	Тип реак- ции	Продукты реакции	Выход, %	
			50°	0.
Без перегруппиров- ки 1.2-миграция брома Последовательно 1,2- миграция брома и перегруппировка Демьянова	$egin{array}{c} S_N \ E \ E \ \Phi \ \end{array}$	{ XVIII. 1-Бромметил-1-циклогексанол XIX. 1-Бром-1-бромметилциклогексан XX. (Бромметилен)-циклогексан XIII. 1-Оксиметил-1-циклогексен VI. Циклогексанон XVII. 1-Бром-1-циклогексен { XIV. Циклогептанон XXIV. 1-Бром-1-циклогептен	41,2 4,1 9,8 9 3,5 2 6,6 7,1	60.8 8.2 17.1 12.6 0,6 — следы
1,2-миграция гидрида из боковой цени из цикла	S_N S_N	 XXI. Циклогексилформальдегид XXII. (Дибромметил)-циклогексан XXIII. 1-Бром-2-бромметилциклогексан 	1,4 4,7 10,6	0,7 следы следы

дающейся расширением цикла. Для 1-бромметилциклогексил-катиона (табл. 4) с увеличением температуры реакции сохраняется общая тенденция к увеличению вторичных процессов, причем увеличивается степень 1,2-миграций гидрид-иона. Отклонение от указанных закономерностей наблюдалось в случае третичного карбониевого иона, образующегося из соединения II,— с повышением температуры реакции происходит подавление вторичных процессов (последовательные 1,2-миграции хлора и расширение цикла). Таким образом, влияние температурных условий реакции следует рассматривать с точки зрения повышения при 0° (по сравнению с 50°) избирательности процесса, а следовательно, большего значения энергетической разницы в термодинамической стабильности первично и конечно образующихся органических катионов.

2. С учетом вышесказанного влияние природы галогена (СІ или Вг) на направление реакции более пелесообразно проследить на примере первичных карбониевых ионов, возникающих в реакциях дезаминирования при 0° (см. табл. 1 и 3). С увеличением нуклеофильного содействия β-заместителя (Вг>СІ) несколько увеличивается общая доля продуктов нуклеофильных перегруппировок, причем увеличивается также и степень перегруппировки Демьянова, что вполне согласуется с литературными данными о соответствующем влиянии β-заместителя с неподеленной электронной парой (³). Появляются вторичные процессы — последовательные миграции брома и гидрид-иона как из боковой цепи, так и из цикла. Все вышеуказанные изменения в реакционной способности 1-галогенциклогексилметил-катионов можно связать с различием в их термодинамической стабильности в зависимости от природы галогена. Как правило, β-бромалкил-катионы более стабильны по сравнению со своими хлорзамещенными аналогами:

(возникают в результате последовательных 1,2-миграций галогена и гидрид-иона из боковой цепи), ⊕СН₂Вг СН₂СП (последовательные миграции галогена и гидрид-иона из цикла), ⊕Вг СП (перегруппировка Демьянова).

3. Влияние природы карбониевого иона (первичный или третичный). Для первичных карбкатионов (табл. 1 и 3) характерны процессы с перегруппировками (миграции галогена, расширение цикла и гидридные перемещения), для третичных (табл. 2 и 4) типичны процессы

без перегруппировок.

Исходные соединения (I—IV) и эталоны для г.ж.х. получены в ранних работах $(^1,^2)$. Г.ж.х. анализ реакционных смесей осуществляли на хроматографе ЛХМ 8М, ДПИ. Стеклянная колонка 240 см \times 3 мм, твердый носитель — целит 545 (80—100 меш), жидкая фаза ПЭГ 20 000 (5%). Температура колонки 100°, скорость азота (газ-носитель) 45—50 мл/мин.

Методика дезаминирования аналогична ранее опубликованной (1, 2).

Московский государственный университет им. М. В. Ломоносова

Поступило 26 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. С. Гудкова, О. А. Реутов и др., ДАН, **210**, № 3 (1973). ² А. С. Гудкова, К. Утениязов, О. А. Реутов. ДАН, **214**, № 3 (1974). ³ G. Elphim of f-Felkin, B. Tchoubar, C. R., **237**, 762 (1953).