УДК 547.87+541.115+541.128

ФИЗИЧЕСКАЯ ХИМИЯ

А. К. БОНЕЦКАЯ, М. А. КРАВЧЕНКО, Ц. М. ФРЕНКЕЛЬ, В. А. ПАНКРАТОВ, С. В. ВИНОГРАДОВА, член-корреспондент АН СССР В. В. КОРШАК

КИНЕТИКА И ТЕПЛОВОЙ ЭФФЕКТ ЦИКЛОТРИМЕРИЗАЦИИ ФЕНИЛЦИАНАТА

В настоящее время одним из наиболее перспективных направлений синтеза термостойких полимеров является реакция полициклотримеризации мономеров с кратными связями, в результате которой образуются устойчивые шестичленные карбо- и гетероциклы. Термодинамика и кинетика этих реакций практически не исследована. К такому типу реакций относится, в частности, полициклотримеризация арилдицианатов с образованием симм-триазинового кольца в узлах сетки полимера.

При полимеризации цианатов наблюдается высокая селективность реакции циклотримеризации $O-C\equiv N$ -групп (1). В этом заключается одна из основных особенностей этих групп, отличающая их от других функциональных групп ($-C\equiv N$. -N=C=O, $-C\equiv CH$ и др.), вступающих в реакцию циклотримеризации, поскольку в последнем случае имеют место, кроме основной, многочисленные побочные реакции (полимеризация в цепь, димеризация и т. п.). Учитывая способность цианатов к «чистой» циклотримеризации, цель настоящей работы заключалась в изучении кинетики и некоторых термодинамических параметров циклотримеризации $-O-C\equiv N$ -групп фенилцианата (Φ Ц) в трифенилцианурат ($T\Phi$ Ц):

реакции, моделирующей образование полимеров при полициклотримеризации и не осложненной побочными процессами.

Циклотримеризацию фенилцианата проводили в растворе дитолилметана в присутствии ацетилацетоната хрома (3+) — одного из наиболее активных катализаторов этого процесса. Скорость циклотримеризации измеряли с помощью двойного калориметра по количеству тепла, выделяемого в определенный момент времени (2).

Глубину превращения ФЦ в ТФЦ определяли с помощью и.-к. спектроскопии по изменению оптической плотности в максимуме полосы поглощения С≡N-группы в области 2240—2280 см⁻¹.

Интегрирование кинетических кривых, изображенных в координатах — количество выделившегося тепла (скорость) — время — давало возможность оценить тепловой эффект реакции. Поскольку реакцию проводили,

как правило, до 70-95% превращения $\Phi \Pi$ в $T\Phi \Pi$, то в каждом опыте определяли глубину превращения, а величину теплового эффекта для 100%-ной конверсии находили расчетом.

Полученные значения скорости, периода индукции и времени достижения максимальной скорости в зависимости от концентрации ацетилаце-

тоната хрома представлены на рис. 1, 2.

На рис. 1, Ia видно, что циклотримеризация Φ Ц является автокаталитической реакцией, а ее максимальная скорость (рис. 1, I6) растет с уве-

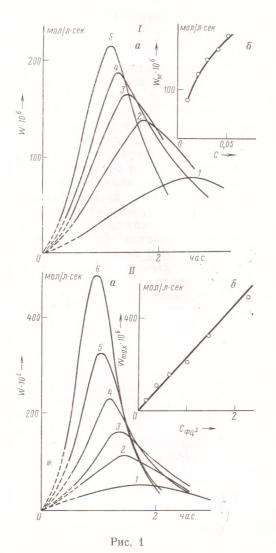


Рис. 1. а — Зависимость скорости циклотримеризации фенилцианата (ФЦ) при 140° от концентрации ацетилацетоната хрома (мол/л) (I) и от концентрации Φ Ц (мол/л) (II). Ia: 0.04; 2 - 0.02; 3 - 0.03; 4 - 0.04; 5 - 0.05. $C_{\Phi \coprod} =$ = 1 Mo π/π ; IIa: 1 - 0.4; 2 - 0.05; 3 - 0.8; 5 - 1.0; 6 - 1,5. $C_{\text{кат}} = 0,05$ мол/л. б — Зависимость максимальной скорости цикло-ΦЦ тримеризации концентрации катализатора $(I\tilde{b})$ и от концен-

трации ФЦ (II6)
Рис. 2. Зависимость периода индукции (а) и времени достижения максимальной скорости (б) от начальной концентрации ацетилацетоната хрома

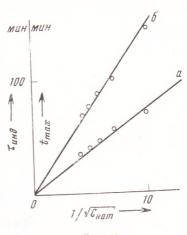


Рис. 2

личением концентрации катализатора. Максимальная скорость реакции, независимо от концентрации катализатора, наблюдается при 40% превращения $\Phi\Pi$ в $T\Phi\Pi$.

Продолжительность индукционного периода реакции, оцененная проведением касательных в точках перегиба S-образных кривых (интегральная форма), обратно пропорциональна корню квадратному из начальной концентрации катализатора (рис. 2, a). Время достижения максимальной скорости $(2, \delta)$ имеет ту же зависимость.

На рис. 1, *IIa* представлена зависимость скорости циклотримеризации ФЦ от его концентрации. Как видно из рис. I, *II6*, максимальная скорость

реакции растет пропорционально квадрату исходной концентрации мо-

номера.

Максимальная скорость реакции, как и в случае зависимости от концентрации катализатора, наблюдается при 40% превращения ФЦ в ТФЦ, независимо от концентрации мономера. Период индукции и время достижения максимальной скорости также обратно пропорциональны корню квадратному из начальной концентрации мономера.

Изучение скорости циклотримеризации фенилцианата в интервале $130-150^{\circ}$ показало, что эта реакция подчиняется Аррениусовской зависимости. Вычисленная эффективная энергия активизации 20 ккал/моль.

Тепловой эффект пиклотримеризации для 100% превращения ФЦ в

ТВЦ оказался равным $\Delta H = -28.1 \pm 1.0$ ккал/моль.

Превращение связи $-C \equiv N$ в связь C = N должно было бы сопровождаться значительно большей величиной теплового эффекта ($\Delta H =$

=65 ккал/моль) (³), чем найдено экспериментально.

Однако тепловой эффект реакции уменьшается за счет стабилизации образующегося симм-триазинового цикла. Симм-триазиновый цикл стабилизируется как за счет делокализации электронов с образованием системы, подобной л-системе бензольного кольца, так и за счет частичной поляриза-

ции азот-углеродной связи в цикле.

Для оценки величины энергии стабилизации симм-триазинового кольца нами было проведено сопоставление экспериментально определенной в указанных выше условиях величины теплового эффекта реакции циклотримеризации ФЦ ($\Delta H = -28.1 \pm 1.0$ ккал/моль) и величины теплоты этой реакции в газообразном состоянии ($\Delta H = -58.2$ ккал/моль). Последняя величина рассчитывалась из аддитивно вычисленных по инкрементам соответствующих групп (3) теплот образования ФЦ и ТФЦ ($\Delta H_f = -29.7$ ккал/моль и $\Delta H_f = 30.9$ ккал/моль). Разность этих величин, равную $\Delta H = 30$ ккал/моль, можно рассматривать как энергию стабилизации симмтриазинового цикла.

Принимая во внимание зависимость величины ΔH реакции в газсобразном состоянии от того, какие инкременты групп используются, а также тот факт, что экспериментально определенная величина ΔH реакции получена в растворе при 140° , это значение энергии стабилизации триазинового цикла следует рассматривать как ориентировочную величину.

Однако с уверенностью можно сказать, что энергия стабилизации симмтриазинового цикла меньше энергии стабилизации молекулы бензола (36 ккал/моль).

Московский государственный университет им. М. В. Ломоносова

Поступило 15 VI 1973

Институт элементоорганических соединений Академии наук СССР Москва

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ W. A. Pankratow, V. V. Korschak et al., Plaste und Kautschuk, 20, 670 (1973). ² Г. М. Чиль-Геворгян, А. К. Бонецкая, С. М. Скуратов, ЖФХ, 34, 1794, 1965. ³ Г. Олкок, Гетероциклические соединения и полимеры на их основе, М., 1970, стр. 99. ⁴ С. Бенсон, Термохимическая кинетика, М., 1971, стр. 267.