УДК 550.34.042.43

ГЕОФИЗИКА

К. К. ЗАПОЛЬСКИЙ

ЧАСТОТНО-ВРЕМЕННАЯ ТРАКТОВКА МАГНИТУДЫ $m_{\scriptscriptstyle PV}$ НА ПРИМЕРЕ МОНЕРОНСКОГО ЗЕМЛЕТРЯСЕНИЯ 5 ІХ 1971 г.

(Представлено академиком М. А. Садовским 25 V 1973)

В основу магнитудной классификации землетрясений в единицах m_{PV} положено определение максимальной в Р-волне амплитуды колебательной скорости $(A/T)_{\text{max}} = \dot{x}/(2\pi) = \dot{A}$. Логарифм этой величины полностью определяет m_{PV} в любой точке наблюдения, в которой известны значения калибровочной функции $\sigma(\Delta)$ (1)

$$m_{PV} = \lg (A/T)_{max} + \sigma(\Delta).$$
 (1)

Таким образом, магнитуда m_{PV} аналогична характеристике максимальной мгновенной мощности колебаний в очаговой функции. Простота формальной процедуры определения m_{PV} , которая сводится к измерению на записи всего лишь одной представительной амилитуды, способствовала быстрому включению $m_{\scriptscriptstyle PV}$ -классификации в программы работ всех сейсмических служб мира.

Однако на практике оказалось, что m_{PV} определяется различными службами неоднозначно. Особенно велики расхождения при сильных землетрясениях $(m_{PV} \ge 7.5)$, достигающие двух единиц m_{PV} при общем диапазоне телесейсмической регистрации всего три единицы — от m_{PV} =5 до *m*_{PV}=8. Эти расхождения намного превышают возможные ошибки измерений на сейсмограммах и не могут быть объяснены случайным рассеянием результатов. Причину неоднозначного определения m_{PV} следует, таким образом, искать в неопределенности динамических представлений о Р-волне, в пределах которой подлежит измерению максимум колебательной скорости. Прежде всего это относится к выбору временного интервала и спектрального диапазона измерений. Поэтому задача о физически обоснованных определениях m_{PV} рассматривалась как часть более общей задачи об изучении динамических характеристик прямых сейсмических волн как очаговых функций.

В работах (\hat{a},\hat{a}) при рассмотрении динамики P-воли сейсмический продесс в точке наблюдения был представлен в виде частотно-временного поля интенсивности. Такое поле описывает интенсивность колебательного процесса системой изолиний колебательной скорости на частотно-времен-

ной плоскости

$$\dot{A} = \dot{A}(t, T). \tag{2}$$

В точке наблюдения, для которой известна калибровочная функция, выражение (2) принимает вид:

$$m_{PV}=m_{PV}(t, T). (3)$$

Частотно-временное поле интенсивности в форме (3) представляет собой поле возможных магнитудных определений при измерении A/T в различные моменты времени t и на разных периодах T. Из всех возможных определений m_{PV} формуле (1) соответствует только одна величина $(m_{PV})_{\max}$ с координатами на частотно-временной плоскости τ_M и T_M . В качестве примера на рис. 1 приведено частотно-временное поле Монеронского землетрясения 5 1X 1971 г. с M=7,5, построенное по наблюдени-

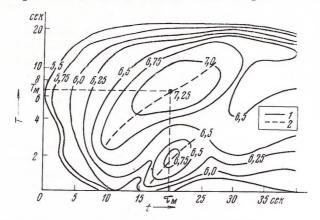


Рис. 1. Частотно-временное поле P-волны Монеронского землетрясения 5 IX 1971 г. 1 — изолинии равных магнитуд, 2 — гребни интенсивности

ям велосиметра ЧИСС-Москва ($\Delta=60^\circ$) с изолиниями интенсивности в единицах m_{Pv} . В данном случае (m_{Pv}) $_{\rm max}=7,3$ наступает через $\tau_{\rm M}=20$ сек. от вступления P-волны на периоде $T_{\rm M}=6,5$ сек.

В работе (2) показано, что длительность τ_M формирования максимума интенсивности в P-волне увеличивается с магнитудой и при неглубоких

землетрясениях зависимость τ_M от M выражается эмпирической формулой $\lg \tau_M = 0.35$ M-1.4. В едини m_{PV} эта зависимость имеет вид $\lg \tau_{M} = 0.55 \ m_{PV} -$ 2,8. Это значит, что подлежащая измерению максимальная амплитуда колебательной скорости в Р-волне при определении m_{PV} перемещается на сейсмограмме от 1 сек. от момента вступления P-волны при $m_{PV}=5$ до 40 сек. и более при m_{PV} =8 и выше. Сейсмические службы при определениях $m_{\scriptscriptstyle PV}$ не учитывали до сих пор временного хода нарастания максимальной интенсивности Р-волн при землетрясениях различной магнитуды и интервал измерепринимался постоянным для землетрясений лю-

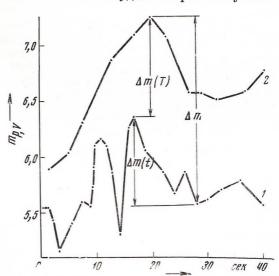


Рис. 2. Спектральные $\Delta m\left(T\right)$ и временные $\Delta m\left(t\right)$ погрешности определения m_{PV} на примере огибающих записей двух каналов ЧИСС P-волны Монеронского землетрясения. I — полоса пропускания 0.85-1.5 сек., 2-4.3-7.2 сек.

бой силы. В этом состоит одна из систематических ошибок определения m_{PV} в настоящее время.

Аналогично, период T_M , соответствующий периоду максимума спектра P-волны, также зависит от магнитуды, изменяясь от 1,2 сек. при m_{PV} =5 до \sim 8 сек. при m_{PV} =8. Приближенно эта зависимость для неглубоких

землетрясений при $\Delta=30-70^\circ$ может быть описана формулой $\lg T_M=0.27$ $m_{PV}-1.27$. Отсюда следует, что правильное определение m_{PV} сильных землетрясений возможно только достаточно длиннопериодной аппаратурой, включающей полосу периодов по скорости до 8 сек. Это условие также нарушается некоторыми сейсмическими службами, которые производят определения m_{PV} высокочувствительными короткопериодными станциями, не регистрирующими колебания с периодами более 1.5-2 сек.

Количественная оценка возможных погрешностей определения m_{PV} связана, таким образом, с учетом двух видов ошибок, обусловленных не-

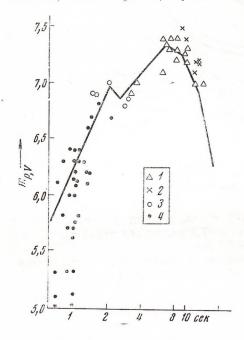


Рис. 3. ЧИСС-спектр P-волны Монеронского землетрясения и m_{PP} -определения сейсмических служб СССР и США: 1-3 — ЕССН СССР (1 — приборы СК, 2 — СКД, 3 — СВКМ), 4 — данные БГС США

локализацией $(A/T)_{\rm max}$ Bo верной времени — временная погрешность $\Delta m(t)$ — и неверным выбором частотного диапазона регистрации спектральная погрешность $\Delta m(T)$. На практике приходится иметь дело суммарной погрешностью $\Delta m(t,$ T), которая полностью описывается частотно-временным полем и опредекак разность значений ляется $m_{PV}(\tau_M, T_M)$ и m_{PV} в точке с координатами (t, T):

$$\Delta m(t, T) = m_{PV}(\tau_M, T_M) - m_{PV}(t, T).$$
(4)

Понятие чисто временной и чисто спектральной погрешностей удобно пояснить посредством сопоставления двух огибающих сейсмических записей, полученных в различных частотных интервалах регистрации. На рис. 2 на магнитудновременной плоскости (t, m_{PV}) построены две огибающие записей землетрясения 5 IX 1971 г., полученные каналами ЧИСС с полосами пропускания 0.85-1.5 сек. (1) и 4.3-7.2 сек. (2). Полоса регистрации канала 2 включает период T_M , в то вре-

мя как полоса I его не включает. Каждая огибающая количественно описывает, в какой мере измеряемая магнитуда зависит от момента измерения A/T на сейсмограмме. Если для измерения выбран участок записи в пределах первых девяти секунд от вступления волны, а регистрация производится короткопериодным каналом 1, то измеренная магнитуда окажется в данном случае преуменьшенной на 1,7 единицы (5,6 вместо 7,3); это суммарная погрешность $\Delta m(t,T)$. Если на этом же канале провести измерения с учетом τ_M , т. е. на максимуме интенсивности волны, то временная погрешность $\Delta m(t) = 0,8$ будет исключена, спектральная же погрешность $\Delta m(T) = 0,9$ останется и может быть исключена только при измерении $(A/T)_{\max}$ на канале 2, включающем период T_M .

Более полное представление о спектральных погрешностях дает ЧИСС-спектр, являющийся сечением частотно-временного поля по гребням интенсивности и отображающий частотное распределение относительных максимумов колебательной скорости в октавных каналах ЧИСС (4). Спектр количественно описывает, в какой мере определяемая магнитуда зависит от периода, на котором производится измерение $(A/T)_{\text{max}}$. На рис. З приведен ЧИСС-спектр P-волны Монеронского землетрясения со шкалой интенсивности в единицах m_{PV} . Этот спектр был сопоставлен

данными измерений m_{PV} станциями ЕССН СССР и БГС США, оснащенными приборами различного типа и расположенными в разных азимутах на эпицентральных расстояниях Δ от 20 до 88°. Видно, что определения m_{PV} различными станциями производились на периодах от 0,7 до 14 сек., а измеренные значения магнитуды при этом изменялись от m_{PV} =5 до 7,5. Эти определения хорошо согласуются с ЧИСС-спектром: в сторону коротких периодов спектральная интенсивность в P-волне круто понижается и соответственно уменьшаются значения m_{PV} , измеренные на этих периодах, а максимальные значения m_{PV} оказываются приуроченными к области максимума спектральной интенсивности волны. Значительные отклонения определений m_{PV} от ЧИСС-спектра в сторону меньших значений на периодах 0,7—1,2 сек., вероятно, обусловлены временными погрешностями, т. е. измерениями в начальной части записи, до наступления максимума интенсивности.

Таким образом, совокупность магнитудных определений по сети сейсмических станций можно рассматривать как интегральную характеристику интенсивности, обусловленную частотным распределением амплитуд

колебательной скорости Р-излучения очаговой функции.

Институт физики Земли им. О. Ю. Шмидта Академии наук СССР Москва Поступило 17 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ B. Gutenberg, C. F. Richter, Ann. Geofis., 9, № 1 (1956). ² К. К. Запольский, ДАН, 210, № 6 (1973). ³ К. К. Запольский, Р. П. Соловьева, В сборн. Экспериментальная сейсмология, «Наука», 1971. ⁴ К. К. Запольский, Н. А. Жбрыкунова и др., В сборн. Землетрясения в СССР в 1969 г., «Наука», 1973.