УДК 517.5

MATEMATUKA

Академик АН АзербССР И. И. ИБРАГИМОВ, И. Ф. КУШНИРЧУК

О ПОЛНОТЕ В АНАЛИТИЧЕСКИХ ПРОСТРАНСТВАХ СИСТЕМ ЦИЛИНДРИЧЕСКИХ ФУНКЦИЙ

В данной заметке исследуется вопрос о полноте в некоторых специальных областях системы бесселевых функций $\{J_{v_n}(z)\}$, где $\{v_n\}$ — произвольная последовательность, вообще говоря, комплексных чисел.

Известно, что функция $J_{\nu}(z)$ при любом ν (действительном или комплексном) является решением уравнения Бесселя с индексом ν (см. (1)):

$$(B-v^2I)\,\varphi(z) = z^2 \frac{d^2\varphi}{dz^2} + z \frac{d\varphi}{dz} + (z^2-v^2)\,\varphi(z) = 0,\tag{1}$$

где I — единичный оператор, $B=z^2 d^2/dz^2+z d/dz+z^2I$ — оператор Бесселя. Кроме того, функция $J_v(z)$ определена и регулярна в комплексной плоскости z с разрезом вдоль действительной отрицательной полуоси и может быть представлена с помощью ряда

$$J_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(k+\nu+1)} \cdot \left(\frac{z}{2}\right)^{\nu+2k}.$$
 (2)

Далее, известно (см. (¹)), что последовательность $\{J_v(z)\}$ цилиндрических функций с целыми неотрицательными индексами v образует базис (и следовательно, полна) в каждом пространстве A_R , $0 < R < +\infty$, однозначных аналитических в круге |z| < R функций. Остается исследовать вопрос о полноте системы $\{J_{v_n}(z)\}$ в случае, когда $\{v_n\}$ — произвольная последовательность комплексных (или действительных) чисел.

Заметим, что с помощью замены независимой переменной z по формуле $z = \exp w$ уравнение (1) преобразуется в следующее уравнение:

$$(\tilde{B}-v^2I)\psi(w) = d^2\psi/dw^2 + (\exp(2w)-v^2)\psi(w) = 0,$$

где $\psi(w) = \varphi(\exp w)$, $\tilde{B} = d^2/dw^2 + e^{2w}$ и I — единичный оператор.

Обозначим через D_R область в плоскости z, являющуюся образом круга $|w| < R \le \pi$ при отображении $z = \exp w$, а через $A(D_R)$ — пространство аналитических в ней функций.

Пусть $T_1 f(z) = \hat{f}(\exp w) = g(w)$, где f(z) — любая функция пространства $A(D_R)$. Оператор $T_1: A(D_R) \to A_R$, взаимно однозначно и непрерывно отображающий пространство $A(D_R)$ на A_R , удовлетворяет равенству

$$T_1B = \widetilde{B}T_1$$
 (3)

и сохраняет начальные условия (в соответствующих точках w=0 и z=1): $D_w^k T_1 f(z) \big|_{w=0} = f^{(k)}(1)$, k=0,1, для каждой функции f(z) из пространства $A(D_R)$. Так как коэффициенты оператора B являются целыми функциями, то этот оператор линейно эквивалентен (см. $\binom{4}{5}$) оператору D_w^2 двукратного дифференцирования в каждом пространстве A_R , $0 < R \le \infty$. В частности, и при $0 < R \le \pi$ существует изоморфизм T_2 : $A_R \leftrightarrow A_R$ пространства A_R , удовлетворяющий равенству

 $T_2 \tilde{B} = D_{v^2} T_2, \tag{4}$

при этом оператор T_2 также сохраняет начальные условия

 $T_2g(w)|_{w=0}=g(0), \quad (T_2g(w))_w'|_{w=0}=g'(0)$ для любой функции

 $g \in A_R$.

Лемма. Существует взаимно однозначное и взаимно непрерывное отображение T_{0} пространства $A\left(D_{\mathtt{R}}\right)$ на пространство $A_{\mathtt{R}},$ удовлетворяющее равенству: $T_0B = D_v^2 T_0$ и сохраняющее начальные условия $T_0f(z)|_{z=0} = f(1)$ $(T_0f(z))'_w|_{w=0}=f'(1)$ для любой функции $f\in A(D_R)$.

Для доказательства леммы достаточно положить $T_0 = T_2 T_1$. Действительно, из равенств (3) и (4) получаем $T_2T_1B=T_2BT_1=D_w^2T_2T_1$. Кроме этого, $T_0f(z)$ $|_{w=0}=T_2(T_1f(z))$ $|_{w=0}=T_2g(w)$ $|_{w=0}=g(0)=f(1)$, а также $(T_0f(z))_w'|_{w=0}=(T_2g(w))_w'|_{w=0}=g'(0)=f'(1)$. С помощью отображения T_0 собственные функции $J_v(z)$ оператора B,

которые соответствуют собственным значениям v2, преобразуются в собственные функции $\exp(vw)$ оператора D_w^2 , принадлежащие тем же собственным значениям. Рассмотрим последовательность комплексных чисел $\{v_n\}$ и функцию $h(w) = \exp w$, принадлежащую классу целых функций [-1,1]. Заметим, что max $|\exp w| = \exp r$.

В дальнейшем нам понадобится следующая теорема И. И. Ибрагимова $((^{6});$ см. также $(^{5}),$ стр. 421): Пусть M(F;r) есть максимум модуля целой

функции $F(z)=\sum\limits_{k=0}^{\infty}C_{k}z^{k},\;C_{k}\neq0$ в круге $|z|\leqslant r$. Система функций $\{F(\alpha_{k}z)\}$

полна в круге |z| < R, если имеет место неравенство

$$\ln M(F; Rr/\theta) < C(\theta) n(r), \quad C(\theta) < \ln (1/\theta), \quad 0 < \theta < 1,$$

где n(r) — функция плотности последовательности $\{\alpha_h\}$.

Применим эту теорему к системе функций $\{h(v_n w) = \exp(v_n w)\}$. Так как свойства полноты системы функций сохраняются при изоморфизмах пространств, то на основании этого получается следующая

Теорема 1. Пусть n(r) есть функция плотности последовательности

комплексных чисел $\{v_n\}$.

Тогда система функций Бесселя $\{I_{v_n}(z)\}$ полна в пространстве $A(D_n)$ npu $R < \min \left(\pi, \overline{\lim} \frac{n(r)}{er} \right)$.

Из этого утверждения вытекают следствия 1,2.

Спедствие 1. Пусть $\{v_n\}$ — последовательность различных комплексных чисел и

$$\mu = \overline{\lim_{n \to \infty}} \frac{\ln n}{\ln |v_n|}, \quad v = \overline{\lim_{n \to \infty}} \frac{n}{|v_n|}.$$

Tогда система функций Bесселя $\{I_{\mathbf{v}_n}(z)\}$ полна в пространстве $A\left(D_{\mathbf{R}}
ight)$: a) npu $R \le \pi$ das $\mu \ge 1$, 6) npu $R \le \min(\pi, \sqrt{2})$ das $\mu = 1$. Ecau $\mu < 1$, to cuстема функций $\{J_{v_n}(z)\}$ не является полной ни в одном из пространств $A(D_R)$, $\partial e R \leq \pi$.

В самом деле, полагая $r=n^{1/\mu}$ и учитывая, что $\max_{0<\theta<1} \left[\theta \ln \left(\frac{1}{\theta}\right)\right]=1/e$,

находим $Rn^{1/\mu} < n/e$. Это неравенство, очевидно, удовлетворяется при любом конечном R, если $\mu > 1$, и не удовлетворяется, если $\mu < 1$, т. е. $R \le \pi$ в первом случае и R=0 во втором. Далее, имея в виду, что $|v_n| \ge (n/v)^{1/\rho}$ и полагая r=n/v, находим $R < \min(R, v/e)$.

Следствие 2. Πy сть $\{v_n\}$ — последовательность комплексных чисел, расположенных в угле раствора 2α , $0 \le \alpha \le 1/2\pi$, с вершиной в начале коор-

 ∂u наr, u $\beta = \underline{\lim_{n \to \infty} (n/|v_n|)}$.

Tогда система функций $\{J_{v_n}(z)\}$ полна в каждом пространстве $A(D_n)$ с $R < \pi \min\{1, \beta \cos \alpha\}.$

Если воспользоваться теоремой 20 из (7) о полноте системы $\{\exp(v_n w)\}$

в горизонтальных полосах, то получится

 $\hat{\mathbf{T}}$ е о р е м а $\ 2$. Пусть $\{\mathbf{v}_n\}$ — последовательность точек правой полуплоскости ξ , $\lambda(r)$ — число этих точек в круге $|\xi^{-1}/_2r| < 1/_2r$ и $d = \lim_{r \to \infty} \frac{\lambda(r)}{r}$.

Tогда система функций $\{J_{v_n}(z)\}$ полна в каждом пространстве $A\left(D_{\scriptscriptstyle R}
ight)$ с

 $R < \pi \min(1, d)$.

Замечание. Область D_R плоскости z, z=x+iy, ограничена кривой $z=e^u(\cos v+i\sin v)$, $|w|^2=u^2+v^2=R^2$, симметричной относительно оси абсцисс, и пересекает ее в точках e^{-R} и e^R , $R\leqslant \pi$. Можно проверить, что круг $K_R = \{z: |z-\operatorname{ch} R| < \operatorname{sh} R\}, 0 < R \le \pi$, содержится в области D_R . На основании этого из предыдущих утверждений получаются условия полноты системы $\{J_{\nu_n}(z)\}$ в круговых областях.

Следствие 3. Пусть $\{v_n\}$, μ и v — такие же, как и в следствии 1. Тогда система функций $\{J_{v_n}(z)\}$ полна в пространстве $A(K_n)$ функций, аналитических в круге K_n при: a) $\mu > 1$ для любого $R \le \pi$, и б) $\mu = 1$ для любого $R < \min \{\pi, \nu/e\}$.

Следствие 4. При выполнении условий теоремы 2 система функций

 $\{J_{\nu_n}(z)\}$ полна в каждом пространстве $A(K_R)$ с $R \le \pi \min\{1, \beta \cos \alpha\}$.

Спедствие 5. Если выполняются условия теоремы 2, то система функций $\{I_{\nu_n}(z)\}$ полна в пространстве $A(K_R)$ при любом $R < \pi \min\{1, d\}$.

Рассмотрим теперь тот частный случай, когда индекс цилиндрической функции $J_{\nu}(z)$ равен половине нечетного числа: $\nu=(2m+1)/2, m=0, 1, \ldots$, а соответствующие функции выражаются (см. (4)) в конечном виде через алгебраические и тригонометрические функции формулами

$$J_{(2m+1)/2}(z) = (-1)^m \left(\frac{2}{\pi}\right)^{1/2} z^{(2m+1)/2} \frac{d^m}{(z dz)^m} \left(\frac{\sin z}{z}\right)$$
$$J_{(2m+1)/2}(z) = \left(\frac{2}{\pi}\right)^{1/2} z^{(2m+1)/2} \frac{d^m}{(z dz)^m} \left(\frac{\cos z}{z}\right)$$

В этом случае $\mu = \nu = \beta = 1$; $\alpha = 0$. Поэтому из теоремы 2 и следствия 2 получается

Следствие 4'. $\mathit{Cucrembi}$ функций $\{J_{\pm(2m+1)/2}(z)\}$ полны в каждом из пространств $A(D_R)$ и $A(K_R)$ при любом $R < \pi$.

Институт математики и механики Академии наук АзербССР

Поступило 4 VII 1973

Черновицкий государственный университет

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Н. Ватсон, Теория бесселевых функций, 1, М., 1949. ² Н. И. Нагнибида, Матем. заметки, 77. № 3, 299 (1970). ³ М. К. Фаге, В сборн. Исследования по соврем. проб. ТФКП, М., 1961, стр. 468. ⁴ К. М. Фишман, УМН, 19, № 5, 143 (1964). ⁵ И. И. Ибрагимов, Методы интерполяции функций и некоторые их применения, «Наука», 1971, стр. 1. ⁶ И. И. Ибрагимов, Изв. АН СССР, сер. матем., 13, 45 (1949). ⁷ Б. Я. Левин, Распределение корней целых функций, «Наука», 1956, стр. 1 «Наука», 1956, стр. 1.