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Вопрос оценки спектральной плотности стационарного процесса по 
его выборочным значениям актуален при различных приложениях теории 
стационарных процессов и широко обсуждается в многочисленной лите­
ратуре. Математической стороне этого вопроса посвящены работы (1_6). 
Подробный разбор случая гауссовского стационарного процесса содержит­
ся в работах (2,s). Общая постановка задачи рассматривается в работе (5). 
Асимптотические формулы оценок спектральной плотности и их моментов 
получены в (‘,4). Во многих приложениях интересно знать асимптотиче­
ское поведение оценки спектра, когда «ширина спектрального окна» стре­
мится к нулю при Т-+°о (Т — длительность наблюдения).

В данной статье изучается асимптотическое поведение первых двух 
моментов оценки спектральной плотности при весовой функции фг(7с), 
зависящей от Т. Асимптотические результаты даются в зависимости от 
некоторых числовых характеристик функции фг(А:) в предположении 
сформулированных ниже свойств гладкости спектральной плотности /(X) 
процесса x(t) и ограниченности его четвертой спектральной плотности.

В работах (7,8) приводятся оценки сверху старших спектральных плот­
ностей процессов, удовлетворяющих некоторым условиям перемешивания, 
а также доказываются некоторые свойства гладкости старших спектраль­
ных плотностей; в работе (7) такие оценки устанавливаются при степен­
ном характере убывания зависимостей по Розенблатту; в работе (8) за 
счет использования условий перемешивания почти марковского типа по­
лучены более сильные оценки старших спектральных плотностей, из этих 
оценок, в частности, вытекает разложимость характеристического функ­
ционала в ряд по старшим спектральным плотностям.

Будем рассматривать стационарный процесс x(t) с дискретным пара­
метром t и считать Мх^—О. Характеристический функционал

Н (а)=Ме'(-а'х\ (a,x)=^^a(t')x(t'),
i

определим на множестве функций a(t), отличных от нуля в конечном 
числе точек t. Смешанные моменты Mn(ti...tn) и семиинварианты 
Sn(t> ■ • .tn) определяются как коэффициенты формальных разложений

оо

H(d) = Jj—' Ju ‘ ^)а(С).. .а(^п),
п = 0 <1..Лп

ОО

In Н (а) = У, £- У Sn («!... i„) а (iO... а (tn),

П=1 
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где Mn(ti... tn) и Sn(t!... tn) предполагаются симметричными функциями 
аргументов ti... tn, суммирование производится по всем последовательно­
стям целых чисел tt.. .tn. В некоторых работах (см. (9)) для смешанных 
семиинвариантов 5n(^...in) и моментов Mn(.tl.. ,tn) используются обо­
значения Sv и Mv, где функция v (t) равна числу появлений t в последова­
тельности ti.. .tn. В этих обозначениях между смешанными моментами и 
семиинвариантами справедливо соотношение

Sy _ V (— l)*-1 тт
V * Z™ 1 ’vi+...4-vfe=v J=1

где v!= П v(i)!, 0!=1, сумма берется по всем последовательностям v4... v*, 
t

(1)

таким, что Vi (0 + • •. +vfc (t) =v (i).
Спектральные меры Fn на кубах П", определяемых неравенствами 

—задаются своими коэффициентами Фурье

‘S'n(t1...i„) = J exp|iJ2

Пп h=i

(2)

В случае стационарного процесса x(t) семиинварианты Sn(tt.. .tn) ин­
вариантны по сдвигам Sn(ti+x .. .tn+r) =Sn(ti.. .tn), а спектральные 
меры Fn сосредоточены на многообразиях Л4+ ... +А„=0 (mod 2л) и их 
естественно записать в виде

Fn (Ю = J /п (Xi... А„) 6* (А4 + ... + А„) dA,... dkn,
м

где Л/сП" и б*(х) = S б (ж—2nt), б (ж) —дельта-функция Дирака.
/=—со

Функцию /„(А,...если она существует, называют спектральной 
плотностью п-го порядка. Заметим, что /2(А,, —А) как функция одного 
переменного является спектральной плотностью стационарного процесса. 
В настоящей работе речь пойдет об оценке /Т(А) спектральной плотности 
/(А), построенной по Т наблюдениям ж(1),..., х(Т) стационарного про­
цесса x(t).

В качестве оценки спектральной плотности /(X) будем употреблять 
выражение

/т (Afc) = <рг (&1)/т (A*+fc,) ,

где kh=2nk/T, суммирование здесь и везде далее, если это не оговорено 
отдельно, производится по всем целым к, —х/^Т<к^х12Т, срт(к) —некото­
рая функция, определенная для целых к, такая, что 0Сфг(/с) =cpT(—к), 
<рт(к+Т) —(рт(к), S у>т(.к) =1.

*

Периодограммы 1Т (А) определяются следующим образом:

■ г т
1т = Ж Zj Х ’

Sj=l s2=l

Для функции ц>т(.к) как для распределения на множестве целых чисел 
введем понятие дисперсии D<pT— S фт(к) -к2, которая в данном случае 

совпадает со вторым моментом ввиду симметрии функции фт(&). В таком 
случае справедлива следующая
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Теорема 1. Пусть процесс x(t) имеет два первых момента, а его' 
спектральная плотность /(А) дифференцируема на отрезке [—л, л],. 
причем

R(k, Д) = |/(А+А)-/(А)-//(А)А|^СА2. (3)
В таком случае выполняется неравенство

|^Сл2(7’-,+4£>фг7’-2). (4)

Следующая теорема устанавливает зависимость дисперсии оценки
спектральной плотности /Г(А) от спектральной плотности /(X) и парамет­
ров функции фу (Л).

Теорема 2. Пусть процесс x(t) имеет все смешанные моменты до 
четвертого порядка. Пусть спектральная плотность /(А) процесса x(t) 
дифференцируема, причем sup|/(A) |<Ci<<», sup|/z(A) |^С2<оо. Пусть 

существует и интегрируема спектральная плотность четвертого порядка 
процесса x(t) такая, что sup |/4 (А4А2А3А4) |^С3<°°. В таком случае суще- 

A.jA.2^'3^’4

ствует дисперсия оценки спектральной плотности /(А) и для нее'
выполняется

k к

^2С22 v 2.,. , 2 8С,С2 1п Т+С3С\
w’k +---------- т---------- '

к

где абсолютная константа С\ определяется ниже.
Доказательство. Воспользовавшись определением /у(Ата), под­

ставим вместо /у (А*) их выражения через выборочные функции процесса. 
я(£), после чего, применяя равенство (1), получим

1

(5)-

Dfr(Am) = у1, ф(тщ)ф(тп2) У2 (54(i1...i4)+52(M2)S'2(i2i1) +
77Ц7П2

+S2 (i4f4) 52 (i2Z3)) exp {—ii4A

что в силу (2) приводится к виду
/)/(Ат) = т4^7 V. фт(т1)фг(7712)Х

4л 1 тгщтп^
х{ J б* (у1|Ж<^/4(а:1...а:4)Фг(а:1—А, m+mi*^2 +Am+mix3—А т+?П2^'4_1~Am-f-mi) X. 

—л<х^<л
л

Xdxi... dx^+ m-j-mi y +Ат+тт У~^~^
—л

л
+ JJ /(а:)/(г/)Фг(^—Ат+т, У Ат+т2 y+Am+m,)^dy|, (6}

— Л

'7П+7П2 % Аш+тг) dy~\~

1Де

фт(1,...Л)_тт^Ц^!
11 sin /zXii = i
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Будем оценивать по отдельности каждое из трех выражений Ah А2, А3 
правой части (6). Согласно работе (5) для функции Фт (од ... од) выпол­
няется следующая оценка:

1 с
C4=sup------- - I бДот-Р.. .+од) |Фг(ад ... од) Idor... йад<<»,

т 4л27' J— Л^Х^Л

откуда для первого выражения At правой части (6) вытекает 

|Л1|<С4С3/7’.
Из свойств гладкости функции /(X), сформулированных в условиях тео­
ремы 2, для выражения Д2 получим

L VI !/7\Л/л \ I — 4л2^22 V 7 2 2 / 7 X1 ^1^2 1П Г|^2-2j Фт (А)/ (М I г, ■ 2_, к фт (*) + '----- у------•
A h

Аналогичным образом для А3 получим
У, Г (Л*) <рт (к+тп) <рг (&-т)

Л

4СА In Т

Соединяя вместе оценки для Аг, А3, получаем утверждение теоре­
мы 2.

Заметим, что в том случае, когда <рт (/с) не зависит от Т хотя бы в ко­
нечном числе точек к, DfT(h) имеет при Т-+°о предел, отличный от нуля. 
С точки зрения приложений спектрального анализа представляет интерес 
функция срт(Л), постоянная на отрезке [—Та, 71®], 0<а<1, и равная нулю 
при Т“<|/с|<1/27’. Для такой функции фт(Л) слагаемое /2(А*)фт(Л+?п) •

• фт(/с—пг) формулы (5) теоремы 2 равно нулю при всех Та<пг<Т—Та. 
Из теорем 1, 2 следует, что в рассматриваемом случае DfT~CT~a, а

при а^‘/2
при а>‘/2

Из этих двух соотношений получаем, что при а<4/5 оценка /Т(Л) 
спектральной плотности /(Л) оказывается асимптотически несмещенной. 
Один из возможных методов выбора наилучших параметров состоит в том, 
что рассматривается среднеквадратическая ошибка

м Cfr (Л) -/ (Л))2=D/T (Л) + (Ж (Л) —/ (Л))г.

Асимптотически наилучшая оценка сверху этой величины согласно тео­
ремам 1 и 2 получается при значении а=4/5.

Автор искренне признателен акад. А. Н. Колмогорову за постановку 
задачи и многочисленные советы.

Московский государственный университет 
им. М. В. Ломоносова
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