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В работе указаны достаточные условия, при которых каждый ядерный 
оператор в локально-выпуклом пространстве имеет однозначно определен­
ный след, и достаточные условия, при которых неприводимое непрерывное 
представление топологической алгебры или группы определяется своим 
характером с точностью до «функциональной эквивалентности» в смысле 
Фелла (6).

1. Пусть Е — отделимое локально-выпуклое пространство над полем 
комплексных или действительных чисел, Е' — сопряженное к Е простран­
ство, наделенное слабой топологией о(А'/, Е). Значение функционала 
х'*=Е ’ на элементе х^Е обозначим через (х', хУ. В дальнейшем для про­
стоты изложения будем предполагать, что Е — квазиполное бочечное про­
странство (например, банахово, полное метрпзуемое или рефлексивное 
пространство). Рассмотрим в алгебраическом тензорном произведении 
Е'®Е сильнейшую локально-выпуклую топологию, в которой раздельно 
непрерывно каноническое билинейное отображение Е'У(Е-*-Е'®Е((х' , х)^- 
^-х'®х). Пополнение пространства Е'®Е в этой топологии (называемой 
индуктивной, см. (*,  2)) обозначается через Е'®Е. Пусть {«,} и {.г/} — ог­
раниченные последовательности в Е и Е' соответственно, a {/.J — такая 

числовая последовательность, что S |^| <°°. Тогда ряд S \ixi'®xi сходит-
1=1 1=1

ся в Е'®Е. Элемент и^Е'®Е, допускающий описанное разложение 
называется ядром Фредгольма. Подпространство (не 

обязательно замкнутое) в Е'®Е, состоящее из всех ядер Фредгольма, 
обозначается через Е'®Е. Если пространство Е банахово, то Е'®Е совпа­
дает с Е'®Е.

—Сопоставляя каждому линейному непрерывному функционалу на 
Е'®Е его композицию с каноническим отображением Е'У(Е^>-Е'®Е, полу­
чим взаимно однозначное соответствие между линейными непрерывными 
функционалами на Е'®Е и раздельно непрерывными билинейными форма­
ми на Е'УТЕ. В частности, билинейная форма (ж', х)^(х', хУ соответствует 
функционалу, называемому следом. След тензора и^Е'®Е обозначает­
ся через tr и. Если и='^к1х/ ® xt, то tr u=’£1\i(xi', хО.

2. Обозначим через 9? (Е) алгебру всех линейных непрерывных опера­
торов в Е, наделенную слабой операторной топологией. Пусть Г —линей­
ное отображение Е'®Е-+&(Е), при котором элемент переходит
в оператор Г (и): х>->-£1к(<.х/, хУх,. Можно проверить, что отображение Г кор­
ректно определено и непрерывно; операторы из t?(E), принадлежащие 
образу этого отображения, называются я д е р н ы м и. Еслп и^Е'®Е, то tr и 
совпадает со следом (в обычном смысле) конечномерного оператора Г (и). 
Если отображение Г взаимно однозначно, то след любого ядерного операто­
ра А^^(Е') корректно определен равенством tr A=tr Г_1(А). Однако Гро-
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тендпк (*)  доказал, что если существует банахово пространство, не обла­
дающее «аппроксимационным свойством», то для этого пространства возмо­
жен такой случай, когда tr и^=0, но Г(п)=0; соответствующий пример 
недавно найден Енфло (7). С другой стороны, след любого ядерного опера­
тора в банаховом пространстве однозначно определен, если это простран­
ство обладает «аппроксимационным свойством», в частности, если оно име­
ет базис (см. (‘)).

* С небольшими изменениями излагаемые ниже результаты справедливы и для 
алгебр с односторонней или аппроксимативной единицей и даже для алгебр без 
единицы.

Если и^Е'®Е, А^И(Е), положим (по определению) Аи=(1®А)и и 
иА = (*А®1)и,  где 1 — единичный оператор, а *А — оператор, сопряжен­
ный к А. Таким образом, если u=£'/.lxi'®xi, то Аи—2$,{Х{'®Ах{ и иА = 
=^‘kitAxi'®xi. Легко видеть, что 1т(Лгг) =tr(u.4); если и^Е'®Е, то Аи^ 
ееЕ'®Е и иА^Е'®Е, причем Г(мЛ) =Г(м) А, Г (Аи) =4Г (и). Полунормы 
А>-> | tr (Аи) | определяют в И(Е) слабую операторную топологию, если 
элемент и пробегает алгебраическое тензорное произведение Е'®Е. Рас­
смотрим топологию в ^(Е), задаваемую указанными полунормами, когда 
и пробегает пространство Е'®Е ядер Фредгольма. Такая топология назы­
вается ультраслабой в том случае, когда пространство Е гильбертово (см. 
(3)); мы будем эту топологию называть ультраслабой ив общем 
случае.

Лемма 1. Отображение Г взаимно однозначно тогда и только тогда, 
когда множество конечномерных операторов плотно в пространстве ^(Е), 
снабженном ультраслабой топологией.

Действительно, ядро отображения Г является ортогональным дополне­
нием образа сопряженного отображения ‘Г. Поэтому для доказательства 
леммы достаточно проверить, что пространство ^(Е) изоморфно слабому 
сопряженному к Е'®Е (оператор А соответствует при этом изоморфизме 
функционалу Н1-Лг(Ли)), а множество конечномерных операторов в ^(Е) 
соответствует образу отображения 'Г. Здесь существенно, что в Е' рас­
сматривается слабая топология (а не сильная, как обычно в (')), что впол­
не допустимо, см. (2), § 5.

Из теоремы Банаха — Штейнгауза нетрудно вывести, что на ограничен­
ных множествах в П’(Е) ультраслабая топология совпадает со слабой 
операторной топологией. Отсюда вытекает следующая

Лемма 2. Последовательность (но не сетъ\) элементов из ^(Е) 
сходится в ультраслабой топологии тогда и только тогда, когда она сходит­
ся в слабой операторной топологии.

Из лемм 1 и 2 вытекает следующая
Теорема 1. Если любой оператор из 9?(Е) является пределом в сла­

бой операторной топологии какой-нибудь последовательности конечномер­
ных операторов, то отображение Г взаимно однозначно и каждый ядерный 
оператор в Е имеет однозначно определенный след.

Следствие. Если пространство Е имеет базис Шаудера, то любой 
ядерный оператор в Е имеет однозначно определенный след.

3. В дальнейшем все линейные пространства и алгебры рассматрива­
ются над полем комплексных чисел. Пусть 91 — ассоциативная топологиче­
ская алгебра с раздельно непрерывным умножением и с единицей * (в на­
стоящей работе рассматриваются только такие топологические алгебры). 
Непрерывным представлением Т алгебры 91 в пространстве Е будем назы­
вать такое непрерывное отображение 71: 91(Е), которое является гомо­
морфизмом алгебр с единицей. Представление Т называется вполне не­
приводимым, если образ гомоморфизма Т плотен в д’ (Е). Представле­
ние Т: а*-+Т(а)  алгебры 91 в Е будем называть ультранеприводи- 
м ы м, если образ гомоморфизма Т плотен в ультраслабой топологии,
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и секвенциально вполне неприводимым, если для любого 
оператора А^ТР(Е) найдется такая последовательность {а„} в $1, что А — 
= ИтТ(а„) в слабой операторной топологии. Ясно, что ультранеприводи-

71->оо

мое представление вполне неприводимо, а секвенциально вполне неприво- 
димое представление ультранеприводимо (см. лемму 2). G каждым непре­
рывным представлением Т алгебры §1 связан замкнутый двусторонний 
идеал Ker Т = Т (а) =0} — ядро этого представления. Представления
алгебры §1 будем называть изоморфными, если их ядра совпадают 
(см. (6)). Для вполне неприводимых представлений изморфизм совпадает 
с эквивалентностью по Феллу (5) (которая для конечномер­
ных неприводимых представлений совпадает с обычной эквивалентностью, 
определяемой оператором подобия).

Пусть G — локально-компактная группа, С (G) — пространство непре­
рывных функций на G, наделенное топологией равномерной сходимости 
на компактах. Через Л (G) обозначим групповую алгебру (относительно 
свертки), состоящую из всех комплексных мер Радона с компактным но­
сителем на G, т. е. линейных непрерывных функционалов на C(G), и снаб­
женную слабой топологией o(^#(G), C(G)). Можно проверить, что 
^#(G) — топологическая алгебра и что для каждого непрерывного пред­
ставления g*-+T g группы G существует такое непрерывное представление 
а^Т(а) алгебры ^#(G), что Тв=Т (6J, где 6g — мера Дирака, сосредото­
ченная в точке g^G; таким образом, устанавливается взаимно однознач­
ное соответствие между непрерывными представлениями группы G и ал­
гебры Jt (G) (см. (6)). Непрерывные представления группы G будем на­
зывать неприводимыми, изоморфными или эквивалентными, если таковы 
соответствующие представления алгебры Л (G).

* О группах с массивными компактными подгруппами см., например, (5). Для 
таких групп эквивалентность по Феллу совпадает с эквивалентностью по Наймарку.

Лемма 3. Пусть G — локально-компактная группа с массивной ком­
пактной подгруппой*,  допускающей счетную базу окрестностей единицы 
(например, G — линейная полупростая группа Ли), и пусть Т — вполне 
неприводимое непрерывное представление группы G в пространстве Е.

Тогда для любого оператора А^П’(Е) найдется такая последователь­
ность {ап} в Л (ТУ), что Л=Пт71(ап) и все операторы Т(ап) конечно- 

П-*-СО
мерны.

Следствие. Если выполнены условия леммы 3, то представление Т 
секвенциально вполне неприводимо и любой ядерный оператор в Е имеет 
однозначно определенный след.

4. Пусть Т — непрерывное представление топологической алгебры 31 в 
пространстве Е, и пусть % — линейный функционал, определенный на 
плотном двустороннем идеале 5Э в 31. Предположим, что для каждого эле­
мента найдется такой тензор иь^Е'®Е, что: 1) Г(щ) =Т(Ь),
2) x(a6)=x(6a)=tr(7’(a)wd) для всех 3) %(б)=0, если Т(Ь)=О.
В работе (8) (где рассматривается более общая ситуация) такой функ­
ционал называется каноническим характером представления У. 
Если каждый ядерный оператор в Е имеет однозначно определенный след, 
то канонический характер имеет вид %(6)=tr T(b). Каноническим харак­
тером непрерывного представления локально-компактной группы G будем 
называть канонический характер соответствующего представления ал­
гебры Jt(G).

Лемма 4. Пусть % — канонический характер непрерывного представ­
ления Т топологической алгебры 51, определенный на плотном идеале 8 в 
91, и пусть Т(Ъ) =0, если и ^(ab) =0 для всех аеЯ.

Тогда представление Т определяется функционалом у с точностью до 
изоморфизма.
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Действительно, множество ЭПКегТ1 зависит только от %, так как со­
стоит из всех таких элементов что %(а&)=0 для всех ае21. Остается 
заметить, что ядро Ker Т является замыканием этого множества. Отметим, 
что характер любого унитарного представления локально-компактной груп­
пы удовлетворяет условию леммы 4. Из этой же леммы выводится сле­
дующая

Теорема 2. Если улътранеприводимые или секвенциально вполне 
неприводимые представления Т\ и Тг топологической алгебры 21 имеют 
канонические характеры и 7.2 соответственно, определенные на плотных 
идеалах и 232 в 21 и если Xi(6)=Xz(&) для всех &е2Э1П82, то представле­
ния Tt и Тг эквивалентны по Феллу (5).

5. Все изложенные результаты, кроме леммы 3 и ее следствия, допу­
скают обобщение на случай произвольных локально-выпуклых про­
странств. При этом следует использовать определения работы (6), а вме­
сто ядерных операторов рассматривать операторы Фредгольма (см. (*,  2)); 
для справедливости в общем случае следствия теоремы 1 следует требо­
вать существование биортогональных базисов в Е и Е'. Отметим, что ультра­
неприводимость представления следует из его тензорной неприводимо­
сти в смысле определения, данного в (‘), если только в этом определении 
под тензорным произведением понимать пополненное индуктивное тензор­
ное произведение.

Автор выражает искреннюю благодарность Б. С. Митягину и 
А. И. Штерну за ценные указания.
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