УДК 541.165

ФИЗИЧЕСКАЯ ХИМИЯ

Р. Ю. ДОБРОВИНСКИЙ, С. Л. МЕСНЯНКИНА, А. Н. МЕНЬ, В. Б. ФЕТИСОВ, член-корреспондент АН СССР Г. И. ЧУФАРОВ

КЛАСТЕРНАЯ ТЕОРИЯ НЕСТЕХИОМЕТРИЧЕСКИХ СОЕДИНЕНИЙ

В работах (1-4) предложен метод кластерных компонентов для описания копцентрационной зависимости различных структурно чувствительных свойств твердых растворов. В этом методе основную роль играет выбор кластерных компонентов, который определяется разложением матрицы раствора на элементарные матрицы кластерных компонентов, часть из которых может быть гипотетической.

В даппой работе предлагается выбирать кластерные компоненты для описания свойств нестехнометрических соединений на основании фазовых диаграмм и фазовых гетерогенных равновесий. Нестехнометрическое соединение, обладающее областью гомогенности, рассматривается как ограниченный раствор кластеров, реально существующих на фазовой диаграмме. Один из кластеров, образующий каркас (основу) раствора, будем называть «хозянном», а остальные кластеры «гостями», следуя (5). При этом дефектность «хозянна» принимается минимальной в пределах области гомогенности, а увеличение дефектности раствора обусловлено ростом концентрации изоморфного кластера «гостя». Свойство раствора в этой модели может быть представлено в виде

$$f = \sum_{i} c_i f_i, \tag{1}$$

где c_i — концентрация кластеров, f_i — свойство кластеров, $\sum c_i = 1$. В зави-

симости от того, какие имеются данные, можно теоретически определить либо свойство нестехиометрического соединения, либо концентрацию компонентов раствора, либо свойства малых примесей или «гостей», либо их состав. Это, в свою очередь, позволяет делать выводы о возможном гетерогенном равновесии и условиях получения данного соединения.

Рассмотрим конкретные примеры.

а) Система Fe-O в области гомогенности вюстита $FeO_{1+\delta}$. В литературе имеется большое количество данных по физическим и физико-химическим свойствам вюстита в зависимости от его состава ($^{6-12}$). Вюстит в области гомогенности рассматривается, исходя из фазовой диаграммы, как ограниченный твердый раствор вюстита с минимальной дефектностью и изоморфного с ним стехиометрического магнетита. Следуя уравнению (1), можно записать:

$$f = cf'_{\text{Fe}_{3}\text{O}_{4}} + (1-c)f_{\text{Fe}_{0_{1+\delta_{1}}}},$$
 (2)

где f—свойство вюстита в области гомогенности, c—концентрация магнетита, $f'_{\text{Fe}_{3}\text{O}_{4}}$ —свойство магнетита изоморфного вюститу, $f_{\text{Fe}_{0}_{1+}}$ —свойство вюстита с минимальной дефектностью. Исходя из уравнения (2), любое свойство вюстита в области гомогенности должно линейно зависеть от дефектности:

$$f = f_{\text{FeO}_{1+\delta_{1}}} + c \left(f'_{\text{FeO}_{1+\delta_{1}}} - f_{\text{FeO}_{1+\delta_{1}}} \right). \tag{3}$$

Зависимость параметра кристаллической решетки вюстита от состава может быть представлена в виде

$$a_{\text{FeO}_{1+\delta}} = a_{\text{FeO}_{1+\delta_1}} + c \left(a'_{\text{Fe}_{3}\text{O}_4} - a_{\text{FeO}_{1+\delta_1}} \right). \tag{4}$$

Расчет проведен для температуры 1000° С.

Параметр решетки вюстита минимальной дефектности при данной темшературе $a_{\text{FeO}_{1,045}}$ =4,311 Å (6 , 13). Магнетит, находящийся в равновесии с вюститом, обладает минимальной дефектностью и является стехиометрическим соединением (14) с параметром кристаллической решетки $a_{\text{Fe}_3\text{O}_4}$ = =8,394 Å (9). Параметр решетки магнетита изоморфного с вюститом будет равен $a'_{\text{Fe}_3\text{O}_4}$ = $^1/_2a_{\text{Fe}_3\text{O}_4}$ = $^4/_4$ 97 Å, а состав FeO_{1,333}. Такое представление согласуется с работами Рота (15).

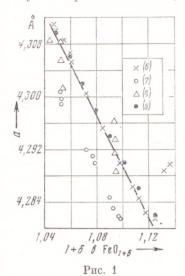


Рис. 1. Зависимость параметра кристаллической решетки вюстита от дефектности. Точки – эксперимент. Данные $\binom{6-9}{1}$, прямая – расчет

Рис. 2. Зависимость состава равновесной газовой фазы и парамагнитной восприимчивости от дефектности вюстита. Точки — эксперимент. Данные (10) и (6), кривые — расчет

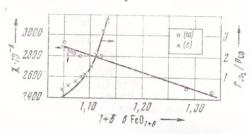


Рис. 2

С использованием этпх данных, задаваясь различными значениями параметра кристаллической решетки вюстита в пределах области гомогенности для 1000° , из уравнения (4) определены соответствующие значения c, затем с помощью уравнения (5):

$$\delta = 0.045 + 0.288 c, \tag{5}$$

нолученного из балансового уравнения ${\rm FeO_{1+0}}{=}c{\rm FeO_{1,353}}{+}(1{-}c){\rm FeO_{1,045}},$ рассчитана дефектность вюстита. Расчет, как видно из рис. 1, дает хорошее согласие с экспериментом ($^{6-9}$).

Зависимость парамагнитной восприимчивости можпо представить, со-

гласно уравнению (3), выражением

$$\chi = \chi_{\text{FeO}_{1,045}} + c \left(\chi'_{\text{Fe}_3\text{O}_4} - \chi_{\text{FeO}_{1,045}} \right).$$
 (6)

Использование данных (10) позволяет получить величину $\chi_{\text{FeO}_{1,045}}$ =2893 · \cdot \cdot 10^{-6} и $\chi'_{\text{Fe}_3\text{O}_4}$ =2439 · 10^{-6} , которая хорошо согласуется с экспериментом (рис. 2).

Расчет состава газовой фазы, равновесной вюститу с различной дефектностью, проведен с помощью уравнения, полученного из закона действующих масс реакции:

$$(Fe_3O_4)_p+0.865CO=3(FeO_{1,045})_p+0.865CO_2.$$

Константа равновесия этой реакции равна

$$K = \frac{(1-c) \int_{\text{Fe}_{0},045}^{3}}{c_{\text{Fe}_{3}}o_{4}} \left(\frac{p_{\text{CO}_{2}}}{p_{\text{CO}}}\right)^{0.865}.$$
 (7)

Поскольку константы твердого раствора не взаимодействуют, вместо активностей в уравнении (7) введены концентрации. Проведя простые математические преобразования, получим окончательное выражение

$$\int_{\ln\left(\frac{p_{\text{CO}_2}}{p_{\text{CO}}}\right)^0} d\ln\frac{p_{\text{CO}_2}}{p_{\text{CO}}} = \frac{1}{0.865} \left[\int_{\ln c_{\text{Fe}_3\text{O}_4}}^0 d\ln c_{\text{Fe}_3\text{O}_4} - 3 \int_{\ln (1-c)_{\text{Fe}\text{O}_{1,045}}}^0 d\ln (1-c)_{\text{Fe}\text{O}_{1,045}} \right].$$
(8)

Нуликом обозначены начальные условия интегрирования.

Сравнение расчетных значений с экспериментом (6) представлено на рис. 2. Отклонения от экспериментальных данных в области вюстита с малой дефектностью объясияются, во-первых, приближениями теории, во-вторых, трудностью экспериментального определения состава вюстита равновесного газовой фазе.

б) Область гомогенности магнетита. По аналогии с вюститом область гомогенности магнетита (14) может быть представлена как ограниченный твердый раствор магнетита с изоморфным ему гематитом состава $Fe_3O_{4,5}(\gamma\ Fe_2O_3)$. Тогда параметр кристаллической решетки раствора может быть представлен уравнением

$$a_{\rm p} = x a'_{\rm Fe3O4} + (1-x) a_{\rm Fe3O4},$$
 (9)

где x — концентрация гематита, изоморфного магнетиту, $a'_{\text{Fe}_3\text{O}_4,5}$ — параметр решетки гематита, $a_{\text{Fe}_3\text{O}_4}$ — параметр решетки стехнометрического магнетита (равновесного $\text{FeO}_{1*\delta_{\max}}$).

Определив $x=2\delta$ из балансового уравнения

$$Fe_3O_{4+\delta} = xFe_3O_{4,5} + (1-x)Fe_3O_4$$

получим окончательное расчетное выражение

$$a_{\text{Fe}_3\text{O}_{4+\delta}} = 2\delta a'_{\text{Fe}_3\text{O}_{4,\delta}} + (1-2\delta) a_{\text{Fe}_3\text{O}_4}.$$
 (10)

С использованием экспериментально найденной зависимости (14) параметра решетки нестехиометрического магнетита от дефектности δ рассчитан параметр кристаллической решетки гематита, изоморфного магнетиту:

$$a'_{\text{Fe}_3\text{O}_{4,5}} = \frac{a_{\text{Fe}_3\text{O}_{4+\delta}} - (1-2\delta) \, a_{\text{Fe}_3\text{O}_4}}{2\delta}.$$

Усреднение по найденным значениям дало a'=8,331 Å, что находится в хорошем согласии с экспериментально найденной величиной $a_{\rm Y}$ Fe₂O₃ = =8,33 Å (16).

Свердловский институт народного хозяйства

Поступило 28 V 1973

Институт металлургии

Уральского научного центра Академии наук СССР

Свердловск

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Н. Мень и др., ДАН, 188, № 1, 139 (1969). ² А. Н. Мень и др., Изв. АН СССР, Метадлы, № 2, 135 (1970). ³ А. N. Меп et al., J. Phys. Chem. Sol., 31, 2117 (1970). ⁴ А. Н. Мень и др., ЖФХ, 46, 1516 (1972). ⁵ Нестехнометрические соединения, М., 1971. ⁶ R. L. Levin, J. B. Wagner jr., Trans. Mct. Soc. AIME, 236, 516 (1966). ⁷ E. R. Jette, F. Foote, J. Chem. Phys., 1, 29 (1933). ⁸ С. Т. Fuju, R. A. Meussner, Trans. Mct. Soc. AIME, 242, 1259 (1968). ⁹ P. K. Foster, A. J. E. Welch, Trans. Farad. Soc., 52, 1636 (1956). ¹⁰ C. M. Ария, Г. Гроссман, ЖНХ, 1, 2210 (1956). ¹¹ J. Bransky, A. Z. Hed, J. Am. Ceram. Soc., 51, № 4, 231 (1968). ¹² L. S. Darken, R. W. Curry, J. Am. Chem. Soc., 67, 1398 (1945). ¹³ J. Сатряет veux et al., Ann. Chim., 5, 250 (1970). ¹⁴ Ю. Д. Третьяков, Автореф. докторской диссертации, МГУ, 1965. ¹⁵ W. L. Roth, Acta crystallogr., 13, 140 (1960). ¹⁶ C. W. van Oosterhout, C. J. M. Rooijmans, Nature, 181, № 4601, 44 (1958).