УДК 512.542

DOI: https://doi.org/10.54341/20778708_2025_4_65_72

EDN: KEQNCF

ОБ ОДНОМ КЛАССЕ ПОДРЕШЕТОК РЕШЕТКИ ПОДГРУПП КОНЕЧНОЙ ГРУППЫ

Н.С. Косенок, И.В. Близнец

Гомельский государственный университет имени Франциска Скорины

ON A CLASS OF SUBLATTICES OF THE SUBGROUP LATTICE OF A FINITE GROUP

N.S. Kosenok, I.V. Blisnets

Francisk Skorina Gomel State University

Аннотация. В данной работе: G — конечная группа; $\sigma = \{\sigma_i \mid i \in I\}$ — некоторое разбиение множества всех простых чисел \mathbb{P} ; $\Pi \subseteq \sigma$; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$ (n — целое число) и $\sigma(G) = \sigma(\mid G\mid)$. Группа G называется: (i) σ -примарной, если G является σ_i -группой для некоторого $i \in I$; (ii) σ -нильпотентной, если G — прямое произведение σ -примарных групп; Π -группой, если $\sigma(G) \subseteq \Pi$. Подгруппа A конечной группы G называется: (i) σ -субнормальной в G, если в G существует цепь подгрупп $A = A_0 \le A_1 \le \cdots \le A_t = G$ такая, что либо $A_{i-1} \le A_i$, либо $A_i / (A_{i-1})_{A_i}$ является σ -примарной группой для всех $i = 1, \ldots, t$; (ii) холловской Π -подгруппой G, если G является G-пруппой и $G(G : A) \cap \Pi = \emptyset$. Мы говорим, что подгруппа G является строго G-субнормальной, если G является G-пильпотентной группой. В данной работе мы доказываем, что множество всех строго G-субнормальных подгрупп, перестановочных с холловой G-подгруппой конечной группы G, образует подрешётку решётки всех подгрупп G.

Ключевые слова: конечная группа, решетка подгрупп, группа операторов, подрешетка решетки, холлова П-подгруппа.

Для цитирования: *Косенок*, *H.C.* Об одном классе подрешеток решетки подгрупп конечной группы / H.C. Косенок, И.В. Близнец // Проблемы физики, математики и техники. — 2025. — № 4 (65). — С. 72—74. — DOI: https://doi.org/10.54341/20778708 2025 4 65 72. — EDN: KEQNCF

Abstract. In this paper: G is a finite group; $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of the set of all primes \mathbb{P} ; $\Pi \subseteq \sigma$; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$ (n is an integer) and $\sigma(G) = \sigma(|G|)$. A group G is said to be: (i) σ -primary provided G is a σ_i -group for some $i \in I$; (ii) σ -nilpotent if G is the direct product of σ -primary groups; a Π -group if $\sigma(G) \subseteq \Pi$. A subgroup G of a finte group G is said to be: (i) σ -subnormal in G if there is a subgroup chain G is a G-group and G is G-primary for all G is G-primary for all G is a G-group of G if G is a G-group and G-group and G-group G-group and G-group G-group and G-group G-group and G-group G-group G-group

We say that a subgroup H of G is strongly σ -subnormal if H^G/H_G is σ -nilpotent. In this paper, we prove that the set of all strongly σ -subnormal subgroups which permute with a Hall Π -subgroup of a finite group G forms a sublattice of the lattice of all subgroups L(G) of G.

 $\textbf{Keywords:} \textit{ finite group, lattice of subgroups, operator group, sublattice of a lattice, Hall Π-subgroup.}$

For citation: Kosenok, N.S. On a class of sublattices of the subgroup lattice of a finite group / N.S. Kosenok, I.V. Blisnets // Problems of Physics, Mathematics and Technics. – 2025. – N 4 (65). – P. 72–74. – DOI: https://doi.org/10.54341/20778708_2025_4_65_72. – EDN: KEQNCF

Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes and $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of \mathbb{P} ; $\Pi \subseteq \sigma$ and $\Pi' = \sigma \setminus \Pi$.

If *n* is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the

order of
$$G$$
; $\sigma(n) = {\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset}$ and $\sigma(G) = \sigma(|G|)$ [1]–[4].

A σ -property of a group [1]–[4] is understood to be any of its properties that depends on σ and which does not imply any restrictions on σ .

Before continuing, let us recall some of the most important concepts of the theory of σ -properties of a group.

A group G is said to be [1]–[4]:

- (i) σ -primary if G is a σ_i -group for some $i \in I$;
- (ii) σ -nilpotent if G is the direct product of σ -primary groups;

A subgroup A of G is said to be [1]–[4]:

(i) σ -subnormal in G if there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \subseteq A_i$ or $A_i / (A_{i-1})_{A_i}$ is σ -primary for all i = 1, ..., n;

(ii) σ -permutable in G provided G is σ -full, that is, G has a Hall σ_i -subgroup for all $i \in I$ and A permutes with all Hall σ_i -subgroups of G for all i.

We use H^G to denote the *normal closure* of the subgroup H in G (so H^G is the intersection of all normal subgroups of G containing H), and H_G is the *core* of H in G, that is, the subgroup of H generated by all normal subgroups of G contained in H.

Let us recall that a subgroup H of G is *strongly* σ -subnormal in G [6] if H^G/H_G is σ -nilpotent.

If $\sigma(H) \subseteq \Pi$, then H is called a Π -subgroup of G. A Π -subgroup H of G is called a Hall Π -subgroup of G if $\sigma(|G:H|) \cap \Pi = \emptyset$.

In this paper, we prove the following result.

Theorem 0.1. Let G be a group. If H is a Hall Π -subgroup of G, then the set of all strongly σ -subnormal subgroups of G which permute with H forms a sublattice in $\mathcal{L}(G)$.

Taking in Theorem 0.1 H = G, we get from this theorem the following two results.

Corollary 0.2 (A.N. Skiba [6]). The set of all strongly σ -subnormal subgroups of G forms a sublattice in $\mathcal{L}(G)$.

Corollary 0.3. Let G be a group. If H is a Hall Π -subgroup of G, then the set of all strongly σ -subnormal subgroups of G which permute with H forms a sublattice in $\mathcal{L}(G)$.

Let us recall that G is said to be: (i) a D_{π} -group if G possesses a Hall π -subgroup E and every π -subgroup of G is contained in some conjugate of E; (ii) a σ -full group of Sylow type [2] if every subgroup E of G is a D_{σ_i} -group for every $\sigma_i \in \sigma(E)$.

In view of [8, Theorem 1.2.14], every Sylow permutable subgroup of G is strongly subnormal in G. On the other hand, if G is a σ -full group of Sylow type, then every σ -permutable subgroup is strongly σ -subnormal in G by Theorem B in [2]. Therefore, since the intersection of any set of sublattices of a lattice is a sublattice of this lattice, we also get from Theorem 0.1 the following two known results.

Corollary 0.4 (Kegel [9]). The set of all Sylow permutable subgroups of G forms a sublattice in $\mathcal{L}(G)$.

Corollary 0.5 (A.N. Skiba [2]). If G ia a σ -full group of Sylow type, then the set of all σ -permutable subgroups of G forms a sublattice in $\mathcal{L}(G)$.

1 Lemmas used

Lemma 1.1 (A.N. Skiba [2]). The class \mathfrak{N}_{σ} , of all σ -nilpotent groups, is a hereditary Fitting formation.

Lemma 1.2 [5, Ch. A, Proposition 1.6]. Let A, B and H be subgroups of G. If AH = HA and BH = HB, then $\langle A, B \rangle H = H \langle A, B \rangle$.

We use $O^{\Pi}(G)$ to denote the subgroup of G generated by all its Π' -subgroups, where $\Pi' = \sigma \setminus \Pi$; $O_{\Pi}(G)$ is the product of all normal Π -subgroups of G.

Lemma 1.3 (A.N. Skiba [2, Lemma 2.6]). If A is σ -subnormal in G and $\sigma(|G:A|) \subseteq \Pi$ -number, then $O^{\Pi}(A) = O^{\Pi}(G)$.

2 Proof of Theorem 0.1

Proof. Let us assume that this theorem is false and let G be a counterexample of minimal order.

Let \mathcal{L} be the set of all strongly σ -subnormal subgroups L of G which permute with H.

Let
$$A, B \in \mathcal{L}$$
 and let $K = \langle A, B \rangle$, $V = A \cap B$.

First we show that K is strongly σ -subnormal in G. By hypothesis, A^G / A_G is σ -nilpotent. Therefore, in view of the isomorphisms

$$A^{G}(A_{G}B_{G})/A_{G}B_{G} \simeq A^{G}/(A^{G} \cap A_{G}B_{G}) =$$

$$= A^{G}/A_{G}(A^{G} \cap B_{G}) \simeq$$

$$\simeq (A^{G}/A_{G})/(A_{G}(A^{G} \cap B_{G})/A_{A}),$$

we get that

$$A^{G}(A_{G}B_{G})/A_{G}B_{G} \in \mathfrak{N}_{\sigma}$$

since the class \mathfrak{N}_{σ} is closed under taking homomorphic images by Lemma 1.1.

Similarly, we can get that

$$B^G(A_GB_G)/A_GB_G \in \mathfrak{N}_{\sigma}$$
.

Moreover,

$$A^G B^G / A_G B_G =$$

$$= (A^{G}(A_{G}B_{G})/A_{G}B_{G})(B^{G}(A_{G}B_{G})/A_{G}B_{G})$$

and so, we have

$$A^G B^G / A_G B_G \in \mathfrak{N}_{\sigma}$$

since the class \mathfrak{N}_{σ} is a Fitting formation by Lemma 1.1.

Next note that $\langle A, B \rangle^G = A^G B^G$ and $A_G B_G \leq \langle A, B \rangle_G$. Therefore we get that

$$\langle A, B \rangle^G / \langle A, B \rangle_G \in \mathfrak{N}_{\sigma}$$

since the class \mathfrak{N}_{σ} is closed under taking homomorphic images by Lemma 1.1. Hence $\langle A,B\rangle$ is strongly σ -subnormal in G.

Moreover, in view of Lemma 1.2,

$$\langle A, B \rangle H = H \langle A, B \rangle$$

since AH = HA and BH = HB by the choice of A and B. Therefore $K \in \mathcal{L}$.

Now we show that $V \in \mathcal{L}$. First note that $(A \cap B)_G = A_G \cap B_G$.

On the other hand, from the isomorphism $(A^G \cap B^G)/(A_G \cap B^G) =$

$$= (A^G \cap B^G) / (A_G \cap B^G \cap A^G) \simeq$$

$$\simeq A_G (B^G \cap A^G) / A_G \leq A^G / A_G$$

we get that

$$(A^G \cap B^G)/(A_G \cap B^G) \in \mathfrak{N}_{\sigma}$$

since the class $\,\mathfrak{N}_{\sigma}\,$ is closed under taking normal subgroup by Lemma 1.1. Similarly, we get that

$$(B^G \cap A^G)/(B_G \cap A^G) \in \mathfrak{N}_{\sigma}.$$

But then we get that

$$(A^G \cap B^G)/(A_G \cap B_G) \in \mathfrak{N}_{\sigma}$$

since the class \mathfrak{N}_{σ} is a formation by Lemma 1.1.

It is also clear that

$$(A \cap B)^G \leq A^G \cap B^G$$
.

Therefore we get that

$$(A \cap B)^G / (A \cap B)_G \in \mathfrak{N}_{\sigma}.$$

Therefore $A \cap B$ is strongly σ -subnormal in G.

Finally, we show that $V = A \cap B$ is permutable with H. Let us assume that this is false. Then G is not a Π -group, since otherwise we have H = G and so

$$G = (A \cap B)H = H(A \cap B).$$

First, let us assume that $R := (A \cap B)_G \neq 1$. Then $(A/R)^G/(A/R)_G = (A^G/R)/(A_G/R) \simeq A^G/A_G$ is σ -nilpotent, so A/R is strongly σ -subnormal in G/R. Similarly, B/R is strongly σ -subnormal in G/R. It is also clear that HR/R is a Hall Π -subgroup of G/R and A/R and B/R permute with HR/R, so the choice of G implies that

$$((A \cap B) / R)(HR / R) =$$
= ((A / R) \cap (B / R))(HR / R) =
= (HR / R)((A / R) \cap (B / R)) =
= (HR / R)((A \cap B) / R).

But then

 $(A \cap B)H = (A \cap B)HR = HR(A \cap B) = H(A \cap B)$, which is a contradiction.

Thus, $(A \cap B)_G = 1$, so $(A \cap B)^G$ is σ -nilpotent and hence $(A \cap B)^G = V \times W$, where W is a Hall Π -subgroup of $(A \cap B)^G$. Then $W \leq H$. It is also clear that $A \cap B = L \times K$, where K is a Hall Π -subgroup of $A \cap B$ and that $K \leq H$. Moreover,

$$L = O^{\Pi}(A \cap B) = O_{\Pi'}(A \cap B).$$

Now we show that $H \leq N_G(L)$. Indeed, we have $H \leq N_G(O^{\Pi}(A))$ and $H \leq N_G(O^{\Pi}(B))$ by Lemma 1.3, so $H \leq N_G(O^{\Pi}(A) \cap O^{\Pi}(B))$.

Now observe that $O^{\Pi}(A) \cap O^{\Pi}(B)$ is normal in $A \cap B$ and from

$$(A \cap B)/(A \cap O^{\Pi}(A) \cap B) \simeq (A \cap B)O^{\Pi}(A)/O^{\Pi}(A)$$
 and

 $(A \cap B)/(B \cap O^{\Pi}(B) \cap A) \simeq (A \cap B)O^{\Pi}(B)/O^{\Pi}(B)$ we get that

$$(A \cap B)/(O^{\Pi}(A) \cap O^{\Pi}(B)) =$$

$$= (A \cap B) / ((A \cap O^{\Pi}(A) \cap B) \cap (B \cap O^{\Pi}(B) \cap A))$$

is a Π-group. Hence

$$L = O_{\Pi'}(A \cap B) = O_{\Pi'}(O^{\Pi}(A) \cap O^{\Pi}(B)),$$
 so $H \le N_G(L)$.

Since $A \cap B = L \times K$, where $K \le H$ and $H \le N_G(L)$, we have

$$(A \cap B)H = (L \times K)H = LH = HL =$$

$$= H(L \times K) = H(A \cap B),$$

a contradiction. Therefore $V \in \mathcal{L}$, so \mathcal{L} is a sublattice of the lattice $\mathcal{L}(G)$.

REFERENCES

- 1. *Skiba*, *A.N.* On σ-properties of finite groups I / A.N. Skiba // Problems of Physics, Mathematics and Technics. 2014. № 4 (21). –P. 89–96.
- 2. Skiba, A.N. On σ-subnormal and σ-permutable subgroups of finite groups / A.N. Skiba // J. Algebra. -2015. -N 436. -P. 1-16.
- 3. *Skiba*, *A.N.* A generalization of a Hall theorem / A.N. Skiba // J. Algebra Appl. 2015. Vol. 15, N₂ 4. P. 21–36.
- 4. *Skiba*, *A.N.* On Some Results in the Theory of Finite Partially Soluble Groups / A.N. Skiba // Commun. Math. Stat. 2016. № 4. P. 281–309.
- 5. *Doerk*, *K*. Finite soluble groups / K. Doerk, T. Hawkes. Berlin New York: Walter de Gruyter, 1992.
- 6. *Skiba*, *A.N.* On sublattices of the subgroup lattice defined by formation Fitting sets / A.N. Skiba // J. Algebra. 2020. № 550. P. 69–85.
- 7. *Shemetkov*, *L.A.* Formations of Algebraic Systems / L.A. Shemetkov, A.N. Skiba // Moscow: Nauka, 1989.
- 8. Ballester-Bolinches, A. Products of Finite Groups / A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad. Berlin New York: Walter de Gruyter, 2010.
- 9. *Kegel*, *O.H.* Sylow-Gruppen and Subnormal-teilerendlicher Gruppen / O.H. Kegel // Math. Z. 1962. N 78. P. 205-221.

The article was submitted 12.09.2025.

Информация об авторах

Косенок Николай Сергеевич – к.ф.-м.н., доцент Близнец Игорь Васильевич – к.ф.-м.н., доцент