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КАТАЛИЗАТОРА КАК ПРИЧИНА ПОЯВЛЕНИЯ МЕХАНИЗМА

С НИЗКОЙ ЭНЕРГИЕЙ АКТИВАЦИИ В РЕАКЦИИ 
ОКИСЛЕНИЯ СО НА ОКИСИ ЦИНКА

В настоящее время установлено, что каталитическое окисление различ­
ных веществ на окисных катализаторах может осуществляться по двум 
механизмам: стадийному, включающему попеременное окисление-восста­
новление поверхности катализатора, и ассоциативному, который заключа­
ется в одновременном взаимодействии реагентов с катализатором и между 
собой (*).  Последний механизм в наиболее общем виде рассматривался в 
работах В. А. Ройтера (2). В условиях, когда процесс протекает по ассоциа­
тивному механизму, скорость каталитической реакции намного превышает 
скорости раздельных стадий окисления и восстановления катализатора. 
В связи с этим представляет особый интерес выяснение природы этого ме­
ханизма и установление причин увеличения скорости суммарного катали­
тического процесса. При исследовании реакции окисления СО на окиси хро­
ма нами было показано, что лимитирующей стадией при протекании реак­
ции по ассоциативному механизму является разложение поверхностных 
карбонатных структур в присутствии газообразного кислорода (3).

В данной работе сделана попытка выяснить причины более низкой энер­
гии активации ассоциативного маханизма по сравнению со стадийным на 
примере реакции окисления СО на окиси цинка.

В работе использовались окись цинка трех сортов, ZnO I и ZnO II полу­
чали соответственно разложением оксалата и карбоната цинка марки ч.д.а. 
на воздухе при 400° С. ZnO III представлял собой реактивный препарат 
марки о.ч. Все образцы прокаливались затем в кислороде при 420°. Удель­
ные поверхности составляли соответственно 40, 15,7 и 5,4 м2/г. Кислород 
получали нагреванием перманганата калия, окись углерода — разложением 
муравьиной кислоты (2). Скорость каталитической реакции измерялась в ва­
куумной циркуляционно-статической установке манометрическим методом. 
Перед измерениями катализатор подвергался тренировке при 420° в ва­
кууме (2 часа,Рост^Ю-4тор) и затем в кислороде (1час,Ро,=10тор). Ана­
логичная обработка проводилась перед измерением спектров э.п.р. и и.-к. 
спектров. И.-к. спектры снимались в высокотемпературной вакуумной кю­
вете на спектрометре UR-10. Методика приготовления образцов и условия 
съемки описаны в (3). Образцы для изучения спектров э.п.р. готовились 
сериями в отдельных ампулах. Спектры снимались при температуре жид­
кого азота на радиоспектрометре JES-3BX.

Результаты и обсуждение. На ZnO I были исследованы и.-к. спектры ад­
сорбированной окиси углерода, определены скорости разложения поверхно­
стных карбонатов в вакууме и в кислороде, а также измерены скорости ка­
талитической реакции и стадии восстановления катализатора окисью угле­
рода при 150° и давлениях СО — 6,7 тор, кислорода 3,3 тор. Адсорбция СО 
на окиси цинка при 150° приводит к появлению в спектре полос поглощения 
1335 и 1525 см-1, которые могут быть приписаны поверхностному карбонат­
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ному комплексу (4). На рис. 1 показан спектр адсорбированной окиси уг­
лерода, там же приведено изменение интенсивности полосы 1335 см-1 со- 
временем в вакууме и в кислороде. Вычисленная по этим данным скорость 
разложения карбонатов в кислороде при начальном покрытии поверхности 
1,5-1013 молекул СО на 1 см2 оказалась равной 1,4-1010 [СО3]/см2-сек, ско­
рость разложения карбонатов в вакууме на рядок ниже, ь то же время 

скорости катализа и вос­
становления оказались 
равны, соответственно,. 
1 • 10‘° и 0,7 • 109 молекул 
СО/см2-сек. Таким обра­
зом, на окиси цинка,каки 
ранее на окиси хрома (3), 
в области ассоциативного 
механизма скорость вос­
становления лимитируется 
термической диссоциацией 
поверхностных карбона­
тов, а скорость катализа — 
разложением этих струк­
тур под действием молеку­
лярного кислорода. Оста­
ется, однако, неясным, 
каким образом взаимодей­
ствие кислорода с поверх­
ностными карбонатами 
способствует их разложе­
нию, что увеличивает^ 
в конечном счете, общую 
скорость реакции.

Для выяснения этого- 
вопроса на ZnO II были 
исследованы спектры э.п.р.

Рис. 1. И.-к. спектр СО адсорбированной при 150° С 
на ZnO I (а), десорбция поверхностных соедине­

нии (б) в кислороде (7) и в вакууме (2)

катализатора и адсорбированного кислорода и определены скорости превра­
щения поверхностных форм кислорода, которые были сопоставлены со ско­
ростью каталитической реакции. Во всех экспериментах давление кислоро­
да составляло 5 тор, окиси углерода 10 тор. Как было показано ранее (5), 
адсорбция окиси углерода на окисленной окиси цинка при 80° приводит к 
образованию на поверхности катализатора карбонатов и одновременному 
появлению сигнала ионов Zn+ (рис. 2). Отметим, что в этих условиях раз­
ложения карбонатов не происходит. Последующая адсорбция кислорода на 
таком образце при комнатной температуре приводит к значительному 
уменьшению сигнала от Zn+ и образованию ион-радикалов кислорода О2~ 
с §-1=2,04; g2=2,09; g3=2,003 (рис. 2).

После адсорбции кислорода при комнатной температуре и образования 
ион-радикалов О2“ была измерена скорость исчезновения этих радикалов: 
при 100°. Изменение интенсивности сигнала О2~ от времени выдержки об­
разца при 100° представлено на рис. 2. Существенно, что исчезновение ион- 
радикалов О2~ не сопровождалось ростом Zn+, что исключает уменьшение 
интенсивности сигнала за счет десорбции кислорода. Скорость исчезнове­
ния О2_, рассчитанная по данным рис. 2, и скорость каталитической реак­
ции, измеренная на этом образце при 100°, приведены в табл. 1. Как видно, 
эти скорости близки между собой.

На образце ZnO II из-за сильного фонового поглощения не удалось из­
мерить скорость разложения поверхностных карбонатов. Одновременной 
измерение скоростей катализа, разложения поверхностных карбонатов и 
исчезновения ион-радикалов О2~ было проведено на ZnO III. Методика 

600



экспериментов была такой же, как и на образцах ZnO I и ZnO II. Измере­
ния проводились при 100° и давлениях кислорода 5 и СО —10 тор. Резуль­
таты опытов, приведенные в табл. 1, показывают, что и на этом образце 
наблюдается хорошее соответствие 
между скоростями катализа, рас­
пада поверхностных карбонатов и 
исчезновения ион-радикалов О2~.

Полученные результаты позво­
ляют представить механизм окис­
ления окиси углерода и сделать 
некоторые выводы о причине низ­
кой энергии активации ассоциа­
тивного механизма реакции.

Предполагаемый механизм 
реакции изображен на схеме 
(рис. 3) *.  Первой стадией реакции 
является образование поверхност­
ного карбоната, которое в исследо­

* Для простоты на схеме карбонаты изображены только в виде бидентатных 
структур. Круглыми стрелками показан сдвиг электронной плотности. Первой стадии 
образования карбонатов может предшествовать, как показано ранее (5), стадия ком­
плексообразования, однако здесь мы этот вопрос рассматривать не будем.

Рис. 2. Спектры э.п.р. ZnO II после адсорб­
ции СО при 80° (а) и последующей ад­
сорбции кислорода при 25° (б), исчезнове­

ние ион-радикалов О2~ при 100° С (в)

ванных условиях протекает до­
статочно быстро, очевидно, вслед­
ствие энергетической выгодности 
этого процесса, так как частичный 
разрыв связей кислород — катали­
затор компенсируется энергией 
образования карбоната. Далее в случае восстановления происходит терми­
ческое разложение поверхностных карбонатов, которое является относи­
тельно менее выгодным процессом и может быть даже эндотермическим, 
если прочность связи углерода с поверхностным кислородом достаточно 
велика. Вследствие этого энергия активации реакции будет достаточно 
большой, а скорость, соответственно, низкой. Энергия, выделяемая в за­
ключительной стадии реокисления катализатора, не используется в труд­
ной стадии реакции и будет рассеиваться в виде тепла.

Однако в ассоциативном механизме картина меняется. Разложение кар­
бонатов становится энергетически более выгодным, так как разрыв связей
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Рис. 3. Схема протекания реакции по стадийному и ассоциативному механизмам

металл — кислород карбоната компенсируется одновременным образованием 
новых связей металл — кислород, при окислении поверхностных восстанов­
ленных ионов металла. Лимитирующей стадии с разложением карбонатов 
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и окислением поверхностных ионов предшествует перенос электрона на мо­
лекулу кислорода, который является достаточно быстрым процессом. Выше 
упоминалось, что перенос электрона происходит уже при комнатной темпе­
ратуре и даже при температуре жидкого азота (5).

Далее идет собственно лимитирующая стадия реакции с полной пере­
стройкой связей, выделением продукта и окислением поверхности. Анализ 
механизма реакции показывает, что ускорение реакции в присутствии кис­
лорода по сравнению с чистым восстановлением происходит потому, что 
для процесса разрыва связей и восстановления катализатора используется

Сопоставление скоростей разложения поверхност­
ных карбонатов Wt, исчезновения радикалов 

О2~ (W2) и катализа (Ж3)

Таблица 1
О

бр
аз

ец

Т1, °C СО, w2 °2 ... молен. О2W3, ,см2-сексм2-сек см2-сек

I 150 0,7-1010 0,5 -1010
II 100 — 1,6-10° 1,2-10®

III 100 0,8-10® 0,5-10® 0,7-10®

свободная энергия процесса окисления катализатора, т. е. происходит свое­
образное сопряжение процессов окисления-восстановления катализатора, 
приводящее к резкому увеличению скорости образования продукта реак­
ции.

В заключение отметим, что подобного типа механизмы представляются 
вероятными в каталитических реакциях ферментов окислительно-восста­
новительного действия.

Институт катализа Поступило
Сибирского отделения Академии наук СССР 27 XI 1973
Новосибирск
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