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Изучение подвижности дислокаций в германии и кремнии (1_1°), нача­
тое методом повторного травления (4) с определения скорости лидирую­
щей дислокации ряда скольжения, постепенно уточнялось (2,3) и доведе­
но до измерения скорости одиночных дислокационных полупетель. Зави­
симость скорости дислокаций от напряжения и температуры г(т, Т), со­
гласно (*), имеет вид

v=vaxm exp (—U/kT), (1)
где zn=l,3 — 1,9 — показатель, не зависящий от Т, U — энергия активации 
процесса, около 1,5—2 эв.

Дальнейшие уточнения (2_1°) дали поправки зависимостей п(т), 
U(x, N), N — концентрация атомов примеси, и т. д. Было установлено 
(2,э,10), что скорость винтовых ветвей дислокационных полупетель боль­
ше, чем шестидесятиградусных при т=С5 кг/мм2 и Г<500°.

Теоретическое обоснование результатов опирается на механизм обра­
зования в результате термической флуктуации двойного перегиба и до­
растания его до критических размеров (11_*5). Скорость дислокации, со­
гласно (11_13), должна определяться вероятностью образования двойного 
перегиба на единице длины дислокации, энергия которого С7Д.П=2 (£/0— 
—7Ут) (8) входит в уравнение типа (1) и определяется энергией одиноч­
ного перегиба t/’o, активационным объемом 7~Ь3 и зависит от т. Предска­
занная теорией (“-13) зависимость v от длины дислокации L не обнару­
живается экспериментально при А=20—2000ц (8,10). Не удается согласо­
вать эксперимент с моделью, в которой дислокация рассматривается в виде 
натянутой струны (12,14_16). Теоретические модели движения дислокаций, 
предложенные в (11_1в), не учитывают граничные условия на внешней по­
верхности и роли изломов на полугексагональных петлях, не дают коли­
чественного согласия с опытом (8).

Нами исследовались особенности скольжения отдельных ветвей гекса­
гональных и полугексагональных петель на образцах германия п- и 
p-типа с концентрацией носителей 1014—1015 см-3. Полугексагональные 
петли вводились царапиной, гексагональные создавались на частицах вто­
рой фазы путем осаждения атомов меди, введенных диффузией. Образцы 
деформировались сжатием вдоль направления [12 3] при 380—500°. Спе­
циальные опыты (”) показали, что атомы меди при А=1015 см-3 не влия­
ют на подвижность дислокаций, но приводят к появлению стартовых на­
пряжений и снижают напряжение, при котором начинается размножение 
дислокаций на введенных полупетлях. Дислокации выявлялись методом 
рентгеновской дифракционной топографии в излучении МоАа,.

На рис. 1 показан образец, вырезанный по плоскости (111) из крис­
талла, насыщенного медью и деформированного при 7’=440°. Образование 
дислокационных петель происходит на крупных частицах осажденной 
меди. Характерна вытянутая вдоль вектора Бюргерса Ь=а/2 [101] форма 
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петель (вектор Бюргерса во всех случаях определялся по погасанию вин­
товых ветвей петель при условии g-b=O). Соотношение скоростей дви­
жения различных ветвей в гексагональной петле постоянно при данной 
температуре (изменяя Т, можно изменять соотношение скоростей), при­
чем наименьшей скоростью обладают винтовые ветви. Шестидесятигра­
дусные ветви также имеют различные скорости. При введении из царапи­
ны полупетли в плоскости (111) имеют вектор Бюргерса Ь=а/2 [101] и 
шестидесятиградусные ветви, выходящие на поверхность (рис. 1). В плос­
кости (111) образуются полупетли с правовинтовой ветвью, выходящей 
на поверхность (111) (рис. 2, верхний), и левовинтовой ветвью, выходя­
щей на поверхность (111) (рис. 2, нижний).

Из сопоставления полупетель в различных системах скольжения 
(рис. 1 и 2) становится очевидным, что их форма может быть заранее 
предсказана по форме соответствующего сечения равновесной гексаго­
нальной петли. Форма гексагональной петли, по-видимому, определяется 
влиянием вершин на вероятность образования и прохождения перегибов 
с одной ветви на другую. В вершинах, где встречаются две шестидесяти­
градусные ветви, появляется краевая ориентация [121], препятствующая 
прохождению перегибов с одной шестидесятиградусной ветви на другую.

Из рис. 1 следует, что скольжение полупетли вдоль поверхности или 
петли, достигшей поверхности (рис. 1, справа), происходит с большей 
скоростью, чем петель в объемных источниках, несмотря на ускорение 
лидирующих дислокаций под влиянием последующих дислокаций ряда. 
Меньшая скорость винтовых ветвей в гексагональных петлях по сравне­
нию с шестидесятиградусными определяется значительной вероятностью 
образования перегибов в плоскости поперечного скольжения, особенно 
если в этой плоскости т отлично от нуля. По-видимому, перегибы с вин­
товых ветвей при переходе на смежные шестидесятиградусные ветви 
влияют на скорости движения последних. Влияние поперечного скольже­
ния увеличивается с повышением температуры (18), уменьшается при 
увеличении т и в некоторой степени подавляется регулярным образова­
нием одиночных перегибов в месте выхода дислокации на поверхность, 
что приводит к резкому увеличению скорости дислокаций, более ярко вы­
раженному для винтовых ветвей. Если движением дислокаций управляет 
процесс рождения одиночных перегибов вблизи внешней поверхности, то 
очевидно отсутствие зависимости скорости дислокации от ее длины L. 
Появление стартовых напряжений и размножения дислокаций вблизи по­
верхности (рис. 1) связано, по-видимому, с закреплением концов полу­
петли у внешней поверхности вследствие стока примесных атомов и то­
чечных дефектов к поверхности, что приводит к потере дислокацией еди­
ной плоскости скольжения.

Энергия активации U, входящая в уравнение (1) и определенная из 
опытов с полупетлями, относится к энергии образования одиночных пере­
гибов. Но это не означает, что для гексагональных петель энергия акти­
вации будет соответствовать энергии образования двойного перегиба, так 
как на вероятность образования перегибов должны оказывать влияние 
силы взаимодействия дислокаций и искажения решетки вблизи излома.

Из приведенных выше экспериментальных данных следует, что усло­
вия скольжения полупетель, опирающихся на поверхность, не соответству­
ют теоретическим моделям (11_16), в которых обсуждается движение бес­
конечно длинной или закрепленной на концах прямолинейной дислокации 
путем образования на ней и движения двойных перегибов.
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Рис, 1. Дислокационная полупетля в плоскости (111), вве­
денная от царапппы, с размножением дислокаций на ветви, 
параллельной_направлению [110], и гексагональные петли, 

образованные -на частицах осажденной меди. 20Х

Рис. 2. Парные дислокационные полупетли в плоскости (111), 
введенные от царапин с поверхностей (111) (вверху) и (Ill). 
Векторы Бюргерса Ь определяют направление смещения 
верхней части образца относительно нижней внутри полу­

петель. 20Х
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