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Последовательность (система) векторов (элементов)

ф„ ф2, ..., фп, ... (1)
гильбертова пространства И называется базисом этого пространства, если 
любой его вектор (элемент) / разлагается в сильно сходящийся (т. е. схо­
дящийся по норме пространства И) ряд по векторам системы (1)

/= У, c^i (2)
г==1

и это разложение единственно.
Известно, что для того, чтобы система векторов (1) была базисом Н, не­

обходимо, чтобы она была минимальной и полной в Я. В том и только в 
том случае, когда система векторов (1) минимальна, она имеет биортого- 
нальную ей систему векторов из И

Фо ф2, ..., ф„, ... (3)

т. е. такую, что (ф„ ф*) =к«, г, А=1, 2,...
Когда система векторов (1) есть базис II, то и биортогональная ей сис­

тема векторов (3) тоже является базисом И (('), стр. 371). Таким обра­
зом, для каждого вектора / из II будем иметь разложение

00

/= У.^«Ф< (4)
1=1

и это разложение в сильно сходящийся ряд по векторам системы (3) един­
ственно.

Можно с самого начала, не нарушая общности, считать матрицу Грама

Ф = [фу], г, 7 = 1, 2,..., фч=(ф<, ф,), (5)

системы векторов (1) положительно определенной, а матрицу Грама со­
юзной с ней системы (3)

Чг = [ф.Д, i,/=l, 2,..., фг>=(ф., ф;), (6)
ограниченной.

Если матрица (6) ограничена, то каждую последовательность {х*} ком­

плексных чисел с S | z*|2<00 можно считать последовательностью компо- k=i
нент некоторого вектора g из И по векторам системы (1), так как ряд

2 %ф* сильно сходится и его сумма имеет числа компонентами по век- Ь = 1
торам системы (1).
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Признак базиса гильбертова пространства будет выражен через наи­
большее собственное значение произведения

(7) 
л-х вырезов Чг„ и Ф„ матриц Грама систем векторов (3) и (1). Собствен­
ные значения матрицы (7) определяются как корни уравнения det (ЧТ„Ф,,— 
—pin) =0. Эти собственные значения будут корнями уравнений

det (Чг„—рФ„-1) =0, (8)

det (Фп-р^„-‘)=0. (9)
Корни этих уравнений в нашем случае все вещественны и положительны. 
Они являются характеристическими числами квадратичной формы

п

(Ч^я, х) = У V (10)
< IV I

i,j=l

по отношению к квадратичной форме
п

(<I>n-lx,x)=y'y'a>niixixh (11)

>,;=i

где <pn” — элементы матрицы, обратной для Ф„.
Теорема 1 (основная). Для того чтобы минимальная и полная в II 

система векторов (1), а вместе с ней и биортогоналъная ей система векторов 
(3) была базисом гильбертова пространства Н, необходимо и достаточно, 
чтобы наибольшее собственное значение матрицы (7), где Ф„ и Т.-п-е 
вырезы матриц Грама (5) и (6) систем (1) и (3), стремилось к единице 
при п-+°°.

Условие необходимо. Пусть система векторов (1) является ба­
зисом Н. Не нарушая общности, можно считать матрицу Грама (5) систе­
мы векторов (1) положительно определенной, а матрицу Грама (6) систе­
мы векторов (3) ограниченной. Введем в рассмотрение матрицу с
элементами i|)nij, i, j=i, 2,..., n, когда хотя бы один из
индексов i или / больше, чем п. Тогда при любой числовой последователь- оо 
ности x—{Xi} с S |а:1|2<°о будем иметь

2=1

(12)
(Rnx, х) = у1[У 11Дх,Хг= y,y,(Pn^^l|gl|--||gn||^0

г ,3=1 i,j=i i,j=i

oo

при где g= S — вектор из II с компонентами х, по векторам си-
2=1

стемы (1), a gn — его наилучшее приближение re-го порядка с помощью и 
первых векторов системы (1).

Пусть Г„ — линейный ограниченный оператор в II, ассоциированный с 
матрицей т. е. такой, что для любых х={х,} и у={у<} из Н имеет
место равенство

(й„г, у) = V V R^XiX^ (Тпх, у).
i,j=i

Этот оператор самосопряженный и неотрицательный. В силу того, что 
{Rnx, у)->~0 при для любых х и у из Н, последовательность операто­
ров Тп слабо сходится к нулю, а так как это последовательность неотрица-
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тельных операторов, то она и сильно сходится к нулю ((3), стр. 561). Вви­
ду того, что (Rnx, х) есть невозрастающая при последовательность
симметричных, равномерно ограниченных снизу форм, стремящаяся к ну­
лю, последовательность ассоциированных операторов {/„J сильно сходит­
ся в обобщенном смысле к нулевому оператору ((3), стр. 567). По извест­
ной теореме ((3), стр. 586), если S<=R — открытое множество, содержащее 
спектр предельного оператора, то спектр оператора Тп асимптотически 
концентрируется на 5, т. е. если En(S) — спектральная мера, построенная 
с помощью спектрального семейства £’„(Х) оператора то En(R—S)->0 
при где R—S — дополнение множества S в R. Таким образом, начи­
ная с некоторого п, спектр оператора Тп находится в произвольно малой 
окрестности нуля, так как в противном случае не выполнялось бы соотно­
шение s— lim (%) =Z? (Л), которое должно иметь место ((3), стр. 537).

Так как формы (10) и (11) положительны, то одним и тем же унитарным 
преобразованием они могут быть приведены к сумме квадратов перемен­
ных и их разность примет вид

£н.'”1ь‘”г- £».т&”’г-£Х’1Ь"’1’.
Й=1 Й=1 Й=1

причем наибольшее из чисел =l7(t(n)—х„(п) есть максимум отноше­

ния первой формы ко второй. Так как спектр усеченной формы (гпх, х) 
не выходит за границы спектра усекаемой формы (Rnx, х), то наибольшее 

число р,(гп) =^п) — /Дп> спектра формы (гпх, х), начиная с некоторого п, на­
ходится в произвольно малой окрестности нуля, т. е. при п-*<» стремится 

к нулю. Отсюда следует, что отношение щ<п> /Х„<п), т. е. максимум отноше­
ния первой формы (10) ко второй форме (11) стремится к единице и, зна­
чит, наибольшее число спектра матрицы (7) при стремится к едини­
це, что и требовалось доказать.

Условие достаточно. Пусть у минимальной и полной в Н сис­
теме векторов (1) и союзной с ней системы (3) матрицы Грама таковы, что 
наибольшее число спектра р(”5 матрицы (7) стремится к единице при 
Так как отношение формы (10) к форме (11) заключено между наимень­
шим р{п) и наибольшим р(") числами спектра матрицы (7) при всех числах 
Xi,.. ., хп, то, в частности, когда эти числа являются компонентами At, ..... 
..., Ап вектора / по векторам системы (1), можно написать

р.(п) У У, i|)f4 iJjSgp1"’ УУ qrAAiA;.
i,j=l i,j=l

Так как при полной системе векторов всегда (?)

п

lim V У<р,Л1,Л;=|/|2,

то при р^’-И, когда и pin)->-l, так как все p/T^l, Л=1,..., п, существует

п

г, 7=1
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n

Если учесть, что наилучшее приближение Е ап‘ср, п-го порядка к век- 1=1
тору / с помощью векторов системы (1) при п-+°° всегда сильно сходится 
к / (2), то легко увидеть, что имеет место

Л=(/,<Р1),
7=1

так

i=i 1=1

п п

’а?= УУ'/фцЛА— у1у1, фп’М *4,-> О
п

1д=1 1,1=1 1,1=1

п

соотношением ап*= £, фпгМгйг 
k=i

Здесь мы воспользовалисьпри

7=1, 2, ..., п, связывающим компоненты Ак вектора / с коэффициентами 
йп наилучшего приближения (2). Единственность разложения (17) сле­
дует из того, что система векторов (3) минимальна.

Теорема 2. Если у минимальной и полной в Н системы векторов (1) 
и союзной с ней системы (3) матрицы Грама (5) и (6) таковы, что произ­
ведение det On-det определителей п-х вырезов этих матриц стремится 
к единице при п-+°°, то системы векторов (1) и (3) являются базисами II.

Действительно,det O„ det 4fn=p1(n) •p,(n)... рГ’ и, прологарифмировав, 
мы убедимся, что In р^-^-0, а следовательно, рп'1)-*-1 при п-+°°.

Замечание. Если минимальная система векторов (1) не является 
полной в Н, то, чтобы она была базисом замыкания своей линейной обо­
лочки, необходимо и достаточно, чтобы наибольшее собственное значение 
матрицы (7) стремилось к единице при
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