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Если квадратичная форма, соответствующая эллиптическому оператору 
Ь(и), не меняет знака в области и коэффициенты достаточно гладкие, то 
в (I 2,3) предложена и исследована первая краевая задача для параболи­
ческого уравнения £(н) = щ. В случае, если коэффициенты просто непре­
рывны или же квадратичная форма меняет знак в области, то краевая за­
дача в указанной постановке некорректна. Примерами этого являются сле­
дующие уравнения хихх+(1+21 In х |_1) ux=ut в области

I „ ^Uk ]
фАа=щк=о, ф)!а=^“'=‘ —— . (2)

ОХ3 I х8=0

Рассмотрим следующие краевые задачи:
1) Пусть 0<аАа<1, 1С/с=<т, l^s^n. Ищется решение и(и{,.. ., ит) 

уравнения (1), для которого существуют (2), удовлетворяющее граничным 
условиям

щ|г=0, ий|е=Л(ж), к=1, 2,..., т, (3)

и условиям склеивания

4>2S+2a-2,a, K&<m/2—п+1,
ф2ь+2»-2,., т/2—п+2^к^т/2,
^2k+23-2-m,s, т/2~п+2^к^т/2,

х1гта+(1+2) | In о: |_1) их=щ, в области 0<ге<1, £>0,
xuxx+aux=ut, а>1, в области |хс|<1, t>0.

Пусть основание цилиндра, где задано уравнение L(u)=«1, содержит 
начало координат, и пусть только гиперплоскости хк=0 являются поверх­
ностями вырождения. Тогда, не нарушая по существу общность, при по­
мощи отображения вместо одного уравнения можно рассматривать систему 
уравнений параболического типа в Q=[GX(0,1) ], где G — область в п- 
мерном пространстве, ограниченная гиперплоскостями хл=0, А=1,.... п, и 
некоторой поверхностью о, опирающейся на эти гиперплоскости, причем 
система будет вырождаться на гиперплоскостях xh=Q. Если Г=[оХ(0, 1) ], 
то компоненты и* решения можно задавать на Г, а на многообразиях 
xk=0, Q<t<l, будут задаваться некоторые условия склеивания между оп­
ределенными парами uh и и,.

Рассмотрим в Й следующую параболическую систему уравнений:

8=1

А=1,..., m=2n, akS — постоянные, &А(х) — функции, сохраняющие знак 
в Й. При данном индексе к обозначим через G нижнее основание й (£=0), 
если bk>0, и верхнее (i=l), если bh<0. Введем обозначения:

'фай—1,«—

l^s^n,
l^s^m/2—k+l, 
m/2—k+2^s^n,

(4)

557



— tt>2ft+2s-2,s <P2ft+2s-2,«>
®2Л-1, s, ф2к-1, s — 

l^/c<m/2—n+1,

(^2k+2s-2,3 <P2h+2s-2,s,

(&2k+2s—2—m,s ty2k+2s—2—m,Sj

m/2—n+2^k^m/2,
m/2—n+2^k^m/2,

l^s<n,

Ks^7?z/2—Zt+1, (5)
m/2—k+2^s^n,

(Вл= «*3=®^*-““.

3=1

2) Пусть все ais>l. Ищется ограниченное решение системы (1), удов­
летворяющее граничным условиям

uh\a=fk, к=1,... ,т, и2А_1|г=0,/с=1,. . ., ш/2, (6)
и условиям склеивания (4) (см. выше).

Если (1) умножим на сщи*, проинтегрируем по области Q, а потом сло­
жим по к, то, учитывая однородные граничные условия (3) и (4), (5), не­
трудно получить, что ы*=0, А=1, .. ,т. Единственность можно доказать и 
по-другому. Для этого рассмотрим уравнение

V |’х,вад-з,а1,)=&щ, Ь>0. (7)
F=1

Лемма 1. Если О4<1 и решение и уравнения (7) в Q достигает своего 
максимума во внутренней точке гиперплоскости хк=0, 0<£<1, то

}inir^l[u(x,tt)-u(x*,tt)]<0. (8)

3 = 1 k=l

1 1
X J... J co (ajjn,..., »„т„, i) (l-Ts)5s+as_s/2dT1 dr„, (10)

0 0 S=1

n 11 n
p= JJ ж,_а'f ••• J a(xiTi,..., xnrn,t) JJt,-'1 (l-T,),/,-a,dT1dTn

8 = 1 0 0 s=l

будут решениями уравнения (7) (&=1) при произвольных as<l, s=l,... 
..., n, qs^Q — наименьшее целое число, удовлетворяющее условиям 
qs+as>1/2, s—i,... ,п. В случае п=1 и а>’/г первая из этих формул при­
ведена в (4 * * * 8).

1*->в

Лемма 2. Пусть ct,<l, i=i,2, и решение и уравнения (7) до­
стигает максимума в точке (х°, i0), лежащей на пересечении гиперплоско­
стей ж{=0, i=l,..., г, 0<7<1. Пусть существует такая окрестность точки 
(xQ,t0): i^r, |х(—Х(°|<б, i>r+l, |й—10|<6, что в этой окрестно­
сти и (х°, ti>)>u(x, t), (ха, to) = (x, t). Тогда

т

limTT ж^-Чгг^’, £0)-tt(z°, i0)]<0, (9)
X* —>Х°-L А

8 = 1

где х' — точка, у которой Xi=x°, i>r+l.
Л е м м а 3. Пусть as>l, 8=1,..., п. Если и — ограниченное реше­

ние (7), равное нулю на гиперплоскостях жА=0, 0<£<1, k=i,... ,п, и на 
нижнем основании, или же и равно нулю на Т и на нижнем основании, то 
и=0 в Q.

Для доказательства нужно построить так называемую барьерную функ­
цию, которая строится, используя формулы: если и (ж, t) — решение урав­
нения (7) при а,=‘/2, s=l,..., п, удовлетворяющее условиям 7a:scoXs=0 
при ж,=0, 8=1,..., п, то функции

558



Существование решения рассматривается для случая, когда Ь,=1 или 
же &,= (—l)s+1, а в качестве области G принимается единичный куб. Задача 
(1) —(5) сводится к разрешимости некоторой системы интегральных, вооб­
ще говоря, сингулярных, уравнений относительно ср2ь-1, s. Приведем их для 
случаев п=2, п=1.

a) n=2,0<as=a<l, Ь,= (—1)s+1.
* i ii

Jd.z J" (ж, g, z) Ф± (g, z) j dz J K2(x, £,1-г)Фг(£,г)Л&=Р(х,1),

0 0 to

(И)

i :

Mt

Mi

Mi
О 
о

о
м2
Ml

о

м2
о
о

Ml
Ф2=(<Рн, фзг, <р31,

0 \Ml I
М2 I’
0 / 

ф12).

V+V
4“(Л„М' ‘1—а

1 24-l 2 Лп 1 /«m
XГ (а) Ц/ mne 4“(Zn)2(1_a>

n,m=i

/.-.(МШа-АШ
X

Л2(М

, 7«-1(ЛтУВ)[Д-а(А,„П)/а-1(М-7а-1(Х„Г5)Д_в(Хп)]ь, —

, ^2 =

Х„>0, 7а-1(Х„)=0, Iv(x) — функция Бесселя. Обращение уравнения 

j dz j М(х, I, t-z) Ф (g, z) d|=T (x, t)

0 0
дается формулой

(12)

(13)

\ n2 nJ ’
(1—а)/2

(Ёт
п=1

^(Нп)

7L« (nJ
X
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X

/1—a (p,n V [/a—1 (Hn V#)/1—а (Цп) 11—a Za—i ([Xn) ]
X

,-a (Н") А-a (Нп)
ОС

— amne~(>h,2+lhn2nt~l},i

Hl.n — 1 

1 7 /..

^mn = J*

0

/Цп\2(1_<х) А-ДцпУ^Л-ДцтУя) \
\ 2 / /2, (ц„) ) ’Л-а(Нп)

^_а(11т)Л-а(Цп) 
ц„>0, /1_а(ц„)=0.

Частично обращая при помощи формулы (13) уравнение (11) с ядром 
Kt, сводим ее к системе интегральных уравнений, ядро которой относи­
тельно t будет сингулярным. Более четко сингулярность видна в 
п=1.

б) 71=1, ai>a2- Если Ь,=1, то
t

I {A1(t-z)+A2(f-z)}<p(z)dz=^(i),

•+1, то

jx,(f-z)<p(z)dz-r j A2(z—f)<p(z)dz=v(f), 

0 ' t

K^t^Ve-'1^-------------- —-------- . J. ,0.0=0

n— i

t

Обращение уравнения ( Ks (t—z') cp (z) dz=y (i) дается формулой
О

если же Ь,= (—1)

as—1

d \ 
<p(O = -^-j K/(^-z)y(z)dz,

0

случае

(14)

(15)

(16)

oo

_ r2(l-a3)722_as(Hn) ’ 1_“ЛЦп?

На основании асимптотического поведения функций Бесселя и их 
ней К, (i) =t~asBs (t), К* (t) =i“s_1 В* (t), где В, и Bs* — непрерывные 
при t^O функции.

В случае at>a2 при помощи (16) уравнения (14) и (15) сводятся к ин­
тегральным уравнениям со слабой особенностью, разрешимость которых 
следует из единственности, а в случае cci=a2 уравнение (14) 
решается формулой (16), а уравнение (15) сводится к сингулярному урав­
нению, разрешимость которого следует тоже из единственности. Задача 2) 
решается в явном виде. Единственность доказывается способом, указан­
ным в ('). 
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