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1. В последнее время появились работы, посвященные квантовомеха- 
ническому расчету гиперполяризуемостей атомно-молекулярных систем. 
В связи с этим было отмечено, что обычно приводимые в литературе по 
нелинейной оптике (см., например, (*,2)) выражения для ряда физиче­
ских величин не являются общими, т.е. они применимы не во всех случаях. 
Например, встречаются ошибки в формулах для эффекта Керра, в выраже­
ниях для оптического вращения, в формулах для генерации второй гармо­
ники и т.д. Эти ошибки носят систематический характер, что отмечалось в 
ряде работ (см., например, (3,4)). Причину ошибок следует искать в из­
вестных неточностях, допускаемых при применении, вообще говоря, хоро­
шо известных формул теоретико-полевой формы теории возмущений. 
В связи с этим представляет известный интерес привести новый вывод 
формул нелинейной оптики.

В основу приводимого ниже вывода положено разложение функции 
Грина в ряд по внешнему полю с применением спектральных представле­
ний для нелинейных поляризационных операторов. Этот метод является в 
достаточной мере общим и в то же время в достаточной мере простым в 
рассматриваемой задаче отыскания компонент Фурье дипольного момента 
системы. Полученные выражения совпадают с формулами, выведенными 
недавно Орром и Уордом (s) и для частного случая Чангом (6).

2. Математическое ожидание дипольного момента системы может быть 
записано в виде

ri=—i J r,G (х, х+) dv, (1)

где х обозначает совокупность пространственных и временной координат 
х= (г, i) = (х, t); G (х, х') — одночастичная функция Грина,

G (х, х') =—i<61 Гф (х) ф+ (а/) 10>. (2)

Величину G(x, ж+) в (1) следует рассматривать как предел G(x, х') 
при t'-+t+O, r'=r. В выражении (2) ф(ж) — гейзенберговский оператор 
поля для электронов во внешнем поле, 10> представляет точную волновую 
функцию основного состояния системы.

В формуле (2) можно перейти к представлению взаимодействия по 
внешнему полю:

<Жа/)=-^<Гф(г)ф+(х')-$>, (3)

S=T exp i J <?^i (x^x j , (4)

где ф (а:) — гейзенберговские операторы системы при равном нулю внешнем 
поле. В операторы ф(а:) взаимодействие между электронами включено 
полностью. Зададим взаимодействие системы с внешним полем в виде 

^i(x)=p(x)y(x), (5)
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где р(z) =ф+ (z)ip(z) — оператор плотности, ф (z) — скалярный потен­
циал.

Функция Грина (3) является функционалом от внешнего поля 
G(x, x')=G(x, х', {ф}). Рассматривая внешнее поле как возмущение, раз­
ложим функцию Грина в ряд Тэйлора:

G(x,x')=G(x,x',O) + [ I ф(у)й* 4 5у+

* Рассмотрение отклика системы на вариацию компонент векторного потенциала
может быть проведено аналогичным образом.

5 Зак. 2659, т. 212, 3

J бф(у) 1ф=о
62G(z,z') 

бф(у)бф(г)
ф (l/) ф (z) ^у d‘z+... 

ф=0
(6)

В практическом отношении наибольший интерес представляет рассмот­
рение дипольных переходов, для которых функция ф(я) может быть за­
писана в виде ф(х)=— (Ег), где Е — напряженность внешнего электриче­
ского поля, которое будет предполагаться представленным рядом Фурье с 
вещественными функциями.

Рассмотрим отклик системы на вариацию скалярного потенциала *

—- ’ =in(z;y)<7’p(z)p(y)>-<p(z)Xp(y)>, (7)
оф\У) I Ф=О

где П (z, у) — поляризационный оператор. Введем далее нелинейный поля­
ризационный оператор

1 I =ш z) =-i<^P (*) Р (У) Р (z) >+
Оф (у) Оф (z) I ф=о

+i< Тр (z) р (у) Хр (z) >+г< Тр (z) р (z) Хр (у) >+

+i<Tp (у) р (z) > <р (z) >—2i< р (z) ><р (у) > <р (г) >. (8)

Последнее выражение определяет первую гиперполяризуемость системы. 
Вторая гиперполяризуемость будет определяться третьей функциональной 
производной от функции Грина по внешним полям

63G(z, z+)
бф(у)бф(г)6ф(гр)

=Ш (z; у, z, w) =-КТр (х) р (у) р (г) р (иг) >+ 
ф=о

+Р<тр (у) р (z) р (иг) > <р (z) >+Г’<7’р (z) р (у) ХТр (z) р (гр) >-

—2P<71p(z)p(y)Xp(z)><p(ip)>+6<p(z)><p(y)><p(z)><p(ip)>, (9)

где Р — оператор симметризации по переменным z, у, z, w. Например, 
Р (ху) (zw) = (ху) (zu>) + (zz) (угр) + (zzp) (yz).

При вычислении гиперполяризуемостей удобно ввести комплексные 
компоненты ф^)

ф,(гг) =—(Е,и)ехр(—iW), (10)

где u(=x, u2=y, u3=z. При подстановке выражений (10) в ряд Тэйлора (1) 
получаем следующую формулу для r4(i):

1 1
ri=ri‘‘+aijEi+ — ^ijhEjEk+ — ^ijhiEjEhEi. (11)

I о!

В последнем выражении г8 — статический дипольный момент, а — поляри­
зуемость, р и у — первая и вторая гиперполяризуемости системы. Связь 
последних величин с введенными выше поляризационными операторами 
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дается формулами

ау((о) =- j я.г/Д1(т) (х, у) dvx dvy,

(оэi<o2) = J Х;1/^ЙП(Ш,“2) (х, у, z) dvx dvy dvz, (12)

Уда (CO1W2(O3) =- J Xty^wJ!<ш‘“2"з) (x, y, z, w) dvx... dvw,

в которых П(т) — коэффициенты Фурье по временным переменным от со­
ответствующих поляризационных операторов, выражения П<т) связаны с 
П(ш) согласно соотношениям

П(“,Ш2) ==Л’((о1(о2)П(“‘Ш2>, П<ш,“2“2) = Л'(ш1с02С0з)П<ш‘“2“з). (13)

Комбинаторный коэффициент К в (13) связан с переходом от вещест­
венных функций ср к комплексным (10). Этот множитель равен 2mD, где 
D — число различных перестановок аргументов оцыг, . . ., т — разность 
между числом ненулевых по частоте (оа компонент Фурье для Л(£) и чис­
лом ненулевых компонент среди набора частот coi(o2... С).

3. Для вычислений выражений (12) удобно перейти к спектральным 
представленпям для поляризационных операторов. Рассмотрим, например, 
выражение (8) для П(х, у, z). При интегрировании по переменным ty 
и tz всю область интегрирования следует разбить на 6 участков по числу 
перестановок аргументов tx, ty, tz. Полагая, например, tx>ty>tz, получим 
для П(х, у, z) с использованпем соотношения 1=£|пХп| следующую 
формулу:

П(х, у, z)=— <01р(ж) |тп><тп|р(у) InXnlp(z) |0>,

в которой <77i|p|n>^<m|p|n>—<0|р|0>. Знак штрих в сумме означает, 
что слагаемое с п=0 и с т=0 должно быть опущено.

Зависимость операторов р(х) от времени дается обычной формулой

р (ж) =ехр (ZZZZ) р (я) exp (—iHt),

с использованием которой выражение для П(“‘“2) преобразуется к следую­
щему виду:

Re П(и,"2) (х, у, z) =Р
/ у z \ y/r <o|p(x) |ZXZ|p(y) |mXm|p(z) |0> 
\ CO, (O2 / J I

Z,m
((О!0—(0о) (ttbno—(1)2)

__________ __________ (14)
I <0|р(у) |ZXZ|p(z) |т><ти|р(х) |0> <Olp(z) |ZXZ|p (х) Im><mIp(y) |0> |

(<Ого+И1) (ит0+юп) ((Ото—(01) (<0<о+<02)

-^m (0ct—(Oi4"(O2.

В приведенных выражениях можно полагать, не нарушая общности, 
что волновые функции вещественны. Компоненты Фурье для оператора 
(9) могут быть записаны в виде суммы слагаемых П=П1+Пц, где опе­
ратор Re П1 имеет вид

Re П1<ш,ш’“’> (х; у, z, w)=—У W ) V Ф(м‘"л) (х; у, z, w);
\ COi (02 (Оз /

/,тл,п
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(15)

ф | <01р(х) |ZXZIp(w) |m><m|p(z) |»X«|p(y) IO>
(<0го—COp) (ci)m0—<01—С02) (C0n0—COi)

<0lp(w) IZXZlp (x) |i7iXwz|p(z) IreXnlp(y) |0> 
(<0IO+C03) ((Ото —(Oi —(O2) ((0„o—(Oi)

<Olp(y) IZXZip(z) ImXmlp(x) InXrclp(w) |0> 

(C0zo + (0i) ((Omo + (01 + (O2) ((O„o — <D3)

+ <0lp(y) lZXZ|p(z) |mXm|p(w) |nXn|p(x) |0>
(cOzo+cDi) ((0mo+(0i + (02) ((0„o+(0p)

Слагаемое Пп содержит следующее произведение матричных элементов 
/У z w \Re П„=Р ( ) X
\ (01 (02 (Оз /

Е' г <0|p(x) lmXm|p( (w) IOXOlp(z) |n><n|p(y) IO>
I ((Omo—(Op) (<Ошо (03) ((0„o (01)

+ <0lp(x) ImXmlp(w) |0X0lp(z) InXnlp(y) |O> ]
((Ото— (Оз) ((О„о + (02) (<а„о—(01)

+ <0|p(w) |т><тп|р(х) |0><01р(у) InXnlp(z) |0>
((От0+(0р) (Юшо+юз) (ю„о+(£>1)

r <0lp(w) |тХттг|р(х) 10X01 р(у) InXrzIp(z) |0> "»
* ~ : г : 7 ; : 7________ , (16)

(Ито + сОз) ((0 nO (02) ((0„o+(0i)

где (op=(Oi+(O2+(O3.
Аналитические свойства поляризационных операторов будут опреде­

ляться аналитическими свойствами топ функции Грина, через которую' 
выражены эти операторы, т.е. в данном случае — причинной функцией 
Грина. Спектральные представления для поляризационных операторов, 
определяемых функциональными производными от запаздывающей или 
опережающей функции Грина, могут быть получены из приводимых выше 
формул, которые совпадают с выражениями, приводимыми в (6). В лите­
ратуре по нелинейной оптике в формулах для р п 7 большей частью опу­
скаются слагаемые <0| р]0>, а также величина П!Г (формула (16)). Вол­
новая функция системы при адиабатическом включении взаимодействия 
при t->—00 имеет согласно известной формуле Гелл —Мана и Лоу сле­
дующий вид:

Ua(0, -о»)Фо
(17)

Многие авторы в задаче о связанных состояниях (см., например, (7)) 
неправильно опускают в (17) знаменатель, что и ведет в формулах для 
гиперполяризуемостей к ошибкам.

В заключение отметим, что приведенное рассмотрение может быть 
легко обобщено на случай конечных температур.
Ленинградский государственный университет Поступило
им. А. А. Жданова 17 XI 1972
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