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Рассмотрим систему уравнений
Л = ^(ф1, ...,фп), 7=1,...,7П, (1)

являющуюся конечномерным приближением некорректного уравнения

/ = Аф, (2)

где / — заданная функция, ф — искомая функция, а К — некоторый опера­
тор. Набор п чисел ф,- (вектор ф) представляет функцию ф, а набор m чи­
сел ji (вектор f) — функцию /. В одном из наиболее типичных случаев ф 
и / — функции одного действительного переменного, (2) — уравнение 
Фредгольма 1-го рода, а (1) — полученная с помощью квадратурных фор­
мул система пг линейных уравнении с п неизвестными, в которой ф, и /— 
значения функций ф и / в некоторых (опорных) точках.

Вследствие некорректности (2) точное решенпе уравнении (1), если 
оно существует, не представляет интереса, так как дает бессмысленный 
результат (сильно осциллирующую функцию). Для удовлетворительного 
решения некорректной задачи надо отказаться от требования, чтобы ра­
венства (1) выполнялись с максимальной возможной точностью, и сделать 
дополнительное предположение об искомом векторе ф, исключающее бес­
смысленные решения.

В методе статистической регуляризации * мы прежде всего формули­
руем задачу как задачу математической статистики. Будем считать, что 
имеют место не равенства (1), а равенства

* Обзор предшествующих работ по методу статистической регуляризации и не­
которых результатов его применения см. в (*).

Л=А3(ф!, ..., ф„)+ел (3)

где £3 —случайные величины. Закон распределения величин е, будем счи­
тать известным, следовательно, известна и условная вероятность P(i | ф) 
при определенном векторе ф (описывающем некоторое состояние приро­
ды) получить в результате эксперимента вектор 1. Метод статистической 
регуляризации основан на байесовском подходе, при котором принимается 
некая априорная плотность вероятности Р (ф) для неизвестного ф и по фор­
муле Байеса определяется апостериорная вероятность Г(ф|1). Математи­
ческое ожидание ф по апостериорному распределению (байесову оценку ф) 
обозначим через ф(0) и назовем регуляризованным решением 
системы (1). Корень из дисперсии компоненты ф; в апостериорном рас­
пределении дает среднеквадратичную ошибку решения в i-й точке.

Выбор той или иной конкретной функции, Р(ф) всегда содержит эле­
мент произвола, ибо никакой опыт не дает непосредственно Р(ф) и этот 
выбор оправдывается лишь апостериори успешным использованием мето­
да, полученного на его основе, подобно тому, как любое уравнение, описы­
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вающее законы природы, может быть подтверждено лишь апостериори 
сравнением теоретических и экспериментальных данных.

Выберем Р(ф) таким образом, чтобы исключить из множества возмож­
ных решений негладкие функции ф. Для этого введем неотрицательно оп­
ределенную симметричную (пХи)-матрицу Q такую, что квадратичная 
форма (ф, йф) представляет конечно-разностное приближение к какому- 
либо функционалу, выражающему меру негладкое™ функции ф (напри­
мер, к норме р-й производной). В качестве априорной плотности вероят­
ности возьмем такую функцию Р (ф), которая, во-первых, приводит к за­
данному значению <а математического ожидания функционала (ф, йф): 

J (ф,йф)Р(ф)Йф=®,

а во-вторых, при условии выполнения указанного равенства содержит ми­
нимум информации о ф, т. е. максимизирует функционал

Н[Р (ф) ] =- J In Р (ф) Р (ф) dtp.

Нетрудно показать, что такая функция есть
ЛДф) =const-a"/2-exp{—'ДсДф, йф)}, (4)

где а=п/а>. Если из каких-то априорных соображений можно задать оп­
ределенное значение <о, естественно взять функцию (4) в качестве апри­
орной плотности вероятности для ф.

.Ограничимся случаем, когда уравнения (1) линейны, и будем обозна­
чать через К.: элементы соответствующей (тХп) -матрицы. Кроме того 
предположим, что ошибки измерения независимы и распределены нор­
мально с дисперсией зг для компоненты f,. Тогда для условной вероятно­
сти получаем

где

;=1 г=1

В работе (2) показано, что в этих условиях регуляризованное решение 
ф°=фа удовлетворяет уравнению

(7Г+ТТ'7Г+<хЙ)фа=А+Ж (7)

где W — диагональная матрица с элементами Это уравнение было
получено Филлипсом (3) из нестатистических (и поэтому, как показано в 
(4), приводящих к неправильному значению а) соображений, и независи­
мо от него постулировано и исследовано А. Н. Тихоновым (5) как коррект­
ное уравнение, приближенно представляющее некорректное уравнение (2). 

Если значение со априори неизвестно, можно взять априорное распреде­
ление для ф в виде «слоистого ансамбля» с плотностью вероятности

00

Р(Ф)=| Р(а)Ро(фЖ (8)
О

где Р(а) —априорная плотность вероятности параметра а — принимает 
постоянное значение в сколь угодно большой области значений а.

Как показано в (6), регуляризованное решение ф(0> при такой априор­
ной информации о ф получается осреднением решения Ф“ по апостериор-
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• ному распределению для а, имеющему плотность вероятности

Р (а | f) =const ■ Р (а) J Ра (ф) Р (f | <p) dtp. (9)

Если P(a|f) имеет резкий максимум при некотором а=а0, то вместо 
осреднения по а можно положить ф<0)=фа°. Значение а0 есть фактически 
апостериорная оценка параметра а по методу наибольшего правдоподобия.

В ходе проверки метода статистической регуляризации было проведено 
много математических экспериментов, состоящих в следующем. Некая 
функция ф подвергалась воздействию интегрального оператора Фредголь­
ма 1-го рода А" и к результату добавлялась случайная функция, значения 
которой во всех точках независимы и распределены по нормальному зако­
ну (ошибка измерения). Полученная таким образом функция, имитирую­
щая результат измерения, бралась в качестве правой части уравнения 
Фредгольма с ядром К и по изложенному методу находилось регуляризо- 
ванное решение ф(0), которое сравнивалось с исходной («истинной») функ­
цией <р.

Эксперименты показали, что при самых различных ядрах К и гладких 
функциях ф параметр а успешно определялся апостериори, а регуляризо- 
ванное решение ф<0) с точностью до ошибки, указываемой теорией, совпа­
дало с функцией ф. Это свидетельствует о том, что априорная информация, 
записываемая в виде слоистого ансамбля (8), с одной стороны, достаточна 
для устранения бессмысленных решений, а с другой стороны, столь неве­
лика по объему и неспецифична, что может быть использована для реше­
ния чрезвычайно широкого класса некорректных задач. Существование 
такого ансамбля — нетривиальный факт, касающийся не собственно мате­
матического метода нахождения решения, а статистических свойств объек­
тов, встречаемых и вычислительной практике.

Часто бывает, что набор чисел st, s2, ..., sm, характеризующий средне­
квадратичную ошибку эксперимента, задан лпшь с точностью до некото­
рого не зависящего от / множителя, который мы обозначим через 1/)ф. 
В этом случае можно попытаться уточнить ошибку апостериори. Подобно 
тому, как неопределенность параметра а выражалась введением интегри­
рования по а в априорную плотность вероятности, неопределенность пара­
метра р мы выразим такой же «слоистой» плотностью условной вероятно­
сти Р (f | ф), т. е. запишем ее в виде интеграла

Р (f | ф) = JР (р) ( JL) “/2 ехр{ - -1Д [f, ф]} dp, (10)

О

где Т’(р) будем считать принимающей постоянное значение в сколь угодно 
большой области значений 0. (Величины s3- считаем отнормированными 
таким образом, что их произведение равно единице.)

С помощью формулы Бейеса снова получим апостериорное распределе­
ние Р(ф|1). Нетрудно показать, что найденное отсюда регуляризованное 
решение ф<0> будет результатом осреднения решения ф“\ соответствующе­
го определенной паре значений (а, р) по апостериорной плотности вероят­
ности P(a,p|f), которая выражается совершенно аналогично (9). Вычис­
ляя интеграл, находим

Р (а, р | f) =const ■ pm/2 X
Xexp|--|-(f, [W-WKB~‘K+W]f) J(y-) " (Det5)-'/!, (11)

где
B^K+WK+ — Q.
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Выражение, входящее в экспоненту со знаком минус, представляет со­
бой минимум квадратичной формы

-у A[f, <р] + -у(<р, Й<р),

Рис. 1. Линии равных значений апосте­
риорной вероятности Р(аф If) в плоскости 
а, ₽. Значения приводятся в отношении 

к значению в максимуме

поэтому оно заведомо не отрицательно.
Вопрос о том, можно ли заменить осреднение по а и на вычисление 

некоторых а=а0 и p=fJ0, решается в зависимости от поведения 
функции Р(а, p|f) в плоскости 
а, {3. Если она имеет резкий мак­
симум в точке («о, р0), такая за­
мена возможна. Значение р0 дает 
статистическую оценку ошибки 
измерения. Серия математических 
экспериментов, аналогичных упо­
мянутым выше, показала, что в 
типичных случаях решения урав­
нения Фредгольма 1-го рода при 
т>15, функция Р(аф|1) содер­
жит достаточно четкий максимум, 
приводящий к удовлетворительной 
оценке ошибки измерения. Пример 
функции P(a,[}|f) приведен на 
на рис. 1.

Возможность апостериорной 
оценки ошибки измерения являет­
ся следствием введения априорной 
информации о функции <р. Из (11) 
видно, что на линии постоянного 
отношения «/(} апостериорная ве- 

функцией р, имеющей максимум.роятность Z>(oc,p|f) является простой
Однако при а=0 (предполагая наличие нерегуляризованного решения)
максимум исчезает.
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