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В последнее время появился ряд работ (1_5), посвященных экспери­
ментальному исследованию влияния давления на скорость процессов за­
мещения лигандов в октаэдрических комплексах металлов

ML3X2++H2O->ML5H2O3++X-. (А)

При этом было показано, что для Х=И=Н2О и М=Со, Сг скорость реакций 
акватации нелинейным образом зависит от давления Р

In £p=ln к0+ВР+СР2,

(3)

В связи с разработкой теории кинетики реакций замещения лигандов
в координационной сфере комплексов металлов (") представляет интерес
провести теоретическое рассмотрение данного вопроса.

Согласно квантовой теории кинетики химических реакций в полярных 
средах (3 * * * 7), константа скорости реакции (А), протекающей по обменному 
механизму (Z), может быть записана в виде

(1)
где к0 — значение константы скорости при атмосферном давлении, а В и 
С — эмпирические константы (Р — увеличение давления по отношению к 
атмосферному’, т. е. Р=р—1). Константы В тз. С связаны с объемом акти­
вации при нулевом избыточном давлении АУо*  и с коэффициентом сжи­
маемости активации Ар*  

1 «Plnfe* _ d(AV*)
2 dP* ” 2dP

(2)

где со, — эффективная частота флуктуаций всей классической подсистемы 
(т. е. растворителя и других классических степеней свободы, вдоль кото­
рых происходит переход) для начального состояния i, — реакционный 
объем, Es — энергия реорганизации растворителя, Eaq hl Ех — вклады в энер­
гию активации вдоль координат входящей и уходящей групп, Uc — энергия 
кулоновского взаимодействия для продуктов реакции. Величина А7Р, пред­
ставляющая разность минимальных значений на термах конечного / и на­
чального состояний при постоянном внешнем давлении Р, равна

A/P=AA+PA7=AG-/cnn —, (5)
И/ 
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где AG — изменение свободной энергии реакции (А) при постоянном дав­
лении Р, ДУ —изменение молярного объема системы в процессе реак­
ции (А).

Разложим выражение (4) в ряд по степеням Р до квадратичных чле­
нов, введя следующие обозначения:

]. = —(1/е.),

а

Es=Qs(l/s0—1/е,),

(ба)

(бб)

(7)
где Ео и es — оптическая и статическая диэлектрические проницаемости 
(запись энергии реорганизации растворителя в форме (7) соответствует 
использованию для вычисления этой величины модели металлических 
сфер (8), в которой фактор Qs учитывает геометрические характеристики 
реагирающих частиц). Рассмотрим теперь зависимость от давления всех 
параметров, входящих в (4). В соответствии с оценками Стрэнкса (9), при 
давлениях, обычно используемых в экспериментах, комплексный ион мож­
но считать практически несжимаемым по сравнению с массой раствори­
теля. Указанное обстоятельство означает, что прп дифференцировании Es 
по давлению величину Qs следует считать константой. Вследствие эффек­
та электрострикции молекулы растворителя (воды) второй координацион­
ной сферы находятся под давлением ~30 кбар (9). Соответственно сжимае­
мость второй координационной сферы в условиях экспериментов незначи­
тельна по сравнению с сжимаемостью всего объема растворителя. В связи 
с этим влиянием давления на параметры актпваппп Eaq и Ех, отвечающие 
вхождению в комплекс из второй сферы молекулы растворителя при пря­
мом процессе и иона X- при обратном, можно пренебречь. По этой же при­
чине можно полагать не зависящими от давления трансмиссионный коэф­
фициент х (если х=1, это утверждение является строгим) и реакционный 
объем V{. Зависимость от давления можно не принимать во внимание, 
если вклад от этого эффекта в AV0* мал по сравнению с полной величи­
ной объема активации, т. е. если кТ\ din ю/dP! | АVo*| . При давлениях

* Выражение для фактора симметрии в виде (9) соответствует определению 
ар при произвольном давлении как производной ар=й(ДС*)/3(Д/Р). Можно пока­
зать, что в сравнительно небольшом интервале Дб? введенный таким образом фактор 
Яр совпадает с экспериментально наблюдаемым фактором aP=d{\G^}/d(\G) = 
=д(ДН^/д(ЫГ).

Р<3—5 кбар (обычно применяемые в экспериментах) это соотношение 
соответствует условию |d In co/dln Р| <1, которое, как показывают оцен­
ки, выполняется для рассматриваемых реакций. Дифференцирование (4) 
в указанном приближении с учетом (6а), (66) и (7) приводит к следую­
щему выражению для A Vo*:

AV0*=a(l —а) (уо—7s)(?5+a(G/+AV). (8)

В формуле (8) через ос обозначен фактор симметрии * при P=Q, который 
равен 
a=l/2+^Ja+Uc+Ex-Eaq')/2Es=l/2+^\G.-kT\^+Uc+E-Eaq'} / 2ES,

где AG0 представляет значение AG прп Р=0. Выражение (8) является кор­
реляционным соотношением между A Vo*  и объемом реакции AV для ре­
акционной серии (когда параметры Qs, Uc, Ех, Eaq и и можно считать мало 
меняющимися) и может быть сопоставлено с экспериментом. Как следует 
из (8), корреляция между константами скоростей AV0* и AV аналогична 
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корреляции между константами скоростей и равновесия (с тем же факто­
ром а).

Второй член разложения (4) по степеням Р равен

Др*=[а(1 —а) (То'-у/)+а'(1-2а) (То-у.) ]<?«+ 
+a'(Z7c+A7)+a(t7"+Ap), (10)

где
а'=72ЯЖ'+(1-2а) (у0—ув) (?.]+А^/2^в, (11).

а Л р=дг (МР) /дР1 — коэффициент сжимаемости реакции. Согласно (10), 
при постоянных значениях параметров системы между коэффициентами 
сжимаемости реакции и активации также имеется корреляция, характери­
зуемая фактором а.

Для сопоставления теоретических выражений (8) и (10) с экспери­
ментом следует задаться явным видом для Uc. В растворах небольших 
концентраций можно пренебречь эффектом дебаевского экранирования, 
представив Uc для продуктов реакции в виде Uc==ZMLsX-Zx/Res=Qc/es. При 
этом UJ=Q^S и U”=Qe^,'. Величина А$, необходимая для расчетов ко­
эффициента сжимаемости активации (А$*),  может быть измерена экспери­
ментально. Приближенно для теоретической оценки А^ можно воспользо­
ваться борновской моделью. С этой целью запишем AG как

ДС=Д£'+ДС8=ДЕ'+ДСмьен2о5+ AG/—AGhjos—AGml5xs, (12)
где ЕЕ — разность внутренних энергий ML5H2O и ML5X, a AGS — свобод­
ная энергия сольватации участвующих в реакции молекул. В рамках мо­
дели Борна свободная энергия сольватации равна

AGS=[ (ZmLsHjO-- 2мь5х)/2гк+^х2/2гх]/бв-- AGh2O, (13)

(гк и гх— радиусы комплекса и ионаХ"). Пренебрегая сжимаемостью 
комплекса по сравнению с сжимаемостью среды (9), а также весьма малым 
вкладом в AG3 от сольватации нейтральной молекулы Н2О находим, что

AF=[ (Zml5h2o—Zml5x)/2tk+Zx2]Ys=^bYs, (14)
АР=(?в7/.

Поскольку, как хорошо известно, вычисление энергий сольватации по Бор­
ну дает завышенные значения, то расчет А^ в рамках этой модели позво-

Объем активации и коэффициент сжимаемости активации для реакций замещения
MLBX2+ + Н2О MLsH2O3+ + X-

Таблица 1

МЬЕ X AV,
см3-мол~’

AVo*,  СМ3 МОЛ-1 103A|3+, см3-мол-'-бар-1
Источник

эксп. теор. ЭКСП. теор.

Cr(NH3)5 Cl -8,4 —10,6+0,3 —10,1 1,04+0,19 1,5 (6)
Вт -7,2 —9,9+0,3 —9,5 1,04+0,14 1,36 »
J —6,0 —9,2+0,2 -8,9 0,96+0,13 1,24 »
Н2О 0 —5,8+0,2 0+0,3 (3)

Co(NH3)5 Cl -11,6 -9,9±0,5 —10,0 2,1+0,2 1,82 (4)
Вт -10,8 —0,7+0,2 —9,3 2,0+0,2 1,73 »
NOs -7,2 —5,9+0,4 -6,0 1,0±0,2 1,13 »
NCS —■ —4,0+1,0 — — »
H2O 0 1,2+0,1 0±0,1 »
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ляет получить лишь качественно правильный результат. Однако, если из­
вестно экспериментальное значение А У, выражение (14) можно исполь­
зовать для нахождения QB при расчетах сжимаемости Ар. При этом

Ap=Crs/"f.W. (15)

Результаты вычислений A Vo*  и А[3*  по формулам (8), (10) и (15) при­
ведены вместе с экспериментальными данными в табл. 1. При вычислении 
параметров активации для амминокомплексов хрома фактор а можно при­
нять' на основании анализа корреляций между константами скоростей и 
равновесия (10, ") равным ~0,5. В случае реакций замещения в комплек­
сах Co(NH.3)5X фактор а близок к единице (12) (а~0,9±0,1). Приведенные 
в табл. 1 теоретические значения AV0* и Ар*  для амминокомплексов ко­
бальта получены при а=0,9. Согласно результатам работы (6), величина 
Е„ и расстояние R приняты равными соответственно ~40 ккал/моль и 
~7 А. Значения констант "f0, Ъ и их производных заимствованы из 
работ (13, “).
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