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УДК 539.3 ТЕОРИЯ УПРУГОСТИ

Д. Г. ГОРДЕЗИАНИ

О ТОЧНОСТИ ОДНОГО ВАРИАНТА ТЕОРИИ ТОНКИХ ОБОЛОЧЕК

(Представлено академиком И. Н. Векуа 24 X 1973)

В (1_3) построена общая теория упругих оболочек, основываясь на 
разложении искомых полей смещений и напряжений в ортогональные 
ряды Фурье по полиномам Лежандра.

Настоящая работа посвящена оценке точности теорип (1_3) при сравне­
нии ее с трехмерной теорией упругости. Рассматриваются лишь призма­
тические оболочки. Для простоты изложения берется оболочка постоян­
ной толщины 2h. Показано, что если решение трехмерной задачи упру­
гости удовлетворяет некоторым условиям гладкости, то точность теории 
оболочек имеет порядок O(N~m~'/2), а если толщина оболочки достаточно 
мала — О (/Н); N — длина отрезка ряда Фурье — Лежандра, т>0 — целое 
число.

В дальнейшем используются обозначения: D~R~ — открытая ограни­
ченная область с границей Г; й={х|а:=(х1, х2, х3)еЯ3, (xt, x2)^D, z3e 
е[ — h, /i]} — трехмерная область, ограниченная поверхностью 5=5+U5_U 
U«SUU5P, где S±={x\x=(xl, х2, x))^S, (xb x2)^D, x3—±h} — соответствен­
но верхняя и нижняя лицевые поверхности, S„=ruX[ — h, h], 5Р=ГРХ 
Х[— h, h], Г=Г„иГр; ГиПГР=0; #°(Q) =L2(Q) — пространство функций, 
суммируемых в квадрате по Q; Я‘(й) — пространство Соболева первого 
порядка; Cm (Q) — пространство функций, m-раз непрерывно дифферен­
цируемых на Q; u=(zti, и2,..., ип) — вектор-функция и, если и^Н Xi, то 
будем писать ие (Я)(•, •) н, II • IIн — скалярное произведение и норма в Н. 
Заметим, что в работе применяется принятое в тензорном анализе прави­
ло суммирования: латинские буквы пробегают значения 1, 2, 3, грече­
ские 1, 2.

Рассмотрим теперь упругую однородную сплошную среду, отнесенную 
к декартовой системе координат и занимающую область Q. Предположим, 
что на лицевых поверхностях заданы соответственно напряжения р+ и р~, 
на SP напряжение р=0, на Su смещение и=0. Пусть Ф — объемная сила. 
Как известно (см., например, (4,5)), решение системы равновесия задан­
ного упругого тела эквивалентно следующей задаче.

Задача 1. Найти вектор и0е70, реализующий минимум функци­
онала

где

>i~ut ds на Vo,

X, р, — константы Ляме, 0(н) =ди,/дх„ (и) — компоненты тензора де­
формации, рц (и) — компоненты тензора напряжения.
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Если u0 — решение задачи 1, то, применяя формулы Бетти, имеем 
I (и) =а(и—и0, и—UqI)—а(и0, и0).

Отсюда следует, что задача 1 эквивалентна задаче о нахождении ми­
нимума функционала

£(u)ss(u-u0, u—u0) =Z(u) — Z(u0) на Vo.

Известно, что
Е(и)>а0||и-и0||/ на Уо, (1)

где ||и||/= (dujdxj, dujдх})н°(а)+ (wf, и()н0(а), a0=const>0 не зависит 
от и (‘,5).

Согласно (3), теорию (1_3) можно строить следующим образом. Разло­
жим смещения и напряжения в ряды Фурье — Лежандра

где

л=о л=о

— полная система полиномов Лежандра,

и=Л~‘(A+‘/i) J uPk(Xi/h)dxs, 
-h

i=h-1 (Л+‘/г) " рРк {xjh) dxs.
-h

Взяв N-ые отрезки этих рядов uN, рл- и подставляя в Z(-), получим при­
ближенное выражение 1N (uN) =Z (uK),

где
_ (ди/дха, если i=a,

I h~lu , если i—3,
К+1 К+3 к к 2 AH" 1

и'=(2й+1)(в +u + ...), ^=Ф;+——{P<+-(-l)*p-}.
2h

Как показано в (3), Z(u)—Z(uN) =O(N~m~'1'') Vue(Cm+2(Q))3. Опираясь 
на эту оценку, в (3) заменяют задачу 1 следующей задачей.

Задача 2. Найти минимум функционала Zw(uv) на классе совокуп- 
. „ о N N N

ностей векторов (щ, и2, и3,... ut, и2, и3).
Пусть Лw —оператор задачи 2, определенный системой Эйлера — Лаг­

ранжа функционала ZN(ujy) и соответствующими краевыми условиями. 
Можно утверждать, что AN положительно определен, существует единст- 

О о . N N N
венное решение (щ, и2, и3,..., щ, v2, v3) соответствующего уравнения и

Vi=0 на Г„. Отсюда следует, что задача о минимуме функцио­
нала Zw( •) и задача с оператором AN эквивалентны и

Vtf---  (yN,l, VN,2, Un,3) ЕУо,

Таким образом, vN принадлежит области определения функционала 
Z( •) и поэтому справедливы соотношения

£(vw)=min£(uN)^£(Utf)=Z(uN)-Z(u0), ure70,N, (2)
ON
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где V0,N — совокупность функций uK«=V0, представимых в виде

Ujr= У, unPk (x3/h).
л'=0

N k

В частности, соотношения (2) справедливы и для и0, я= £ u0A (x3/7i), Л = 0
где Uq(^i, х2, х3) — точное решение задачи 1. Отсюда следует, что

fl(Z0,N> Z0,n) (П0 к) /(По), (3)

где z0|W—(vN—u„) — погрешность приближенного решения.
Из (3), определения билинейной формы а(-,-) и (1) следуют оценки 

для e,j(z0,N), 0(zo.w), Pa(z0N), z0,N в норме пространства Я°(£2|), если будет 
известна оценка для 7(uOiW) —I(u0).

Пользуясь оценкой из (3) для /(иЛ.)—Z(u) и учитывая сказанное выше, 
убеждаемся, что верно

Утверждение 1. Если u0<=(Cm+2(S2))3, то процесс метода (*“3) 
Сходится U ||Zo.jy||(h°(q))% II9 (Zo,n) ||н°(о), l|6ij(Zo,wl) Ин°(е), ll/,ij(zo,x) Пя°(а) 
личины порядка О .

Можно получить и более точные оценки при тех же условиях. Пусть 
u0e=(C’”!+2(Q))3. Тогда, пользуясь известными оценками для рядов Фурье — 
Лежандра, можно показать, что

U0 (Х1, Х2, х3) = J1 ИоА t

Н=0

(и°)хз/= (У2и°^'‘ (”т))
й = 0

и, следовательно,
a(un.N-u0, u„,N-u0) =Z(u„.w) -Z(u„) =0(У-(2т+о).

Отсюда следует
Теорема 1. Если решение задачи 2 u0^(Cm+2(Q))3, то процесс ме­

тода (1_3) сходится и

II0(zo.„i)I|h"(Q)=(9(7V-”!-,/1), 11е.-г(2о,я)||н»(0)=0(У-”-,/-), 

llp«(zo,N) I1h"w=O (У—’й), ||z0,w|| (н»(0))»=(9(У-’"-,л).
Предположим теперь, что толщина оболочки достаточно мала и име­

ют место следующие разложения:

Uo (xt, х2, х3) = У, - Uoxs« (х„ Х2, 0) +0 (/lN+‘) ,

h=0

(u»)«/= (£-^-^(^,^,0)) (4)

k=Q

n . _' ;
(£^^(*^,0)) +o(^+i),

h=0 a

a=l, 2, VjeQ.
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Утверждение 2. При условиях (4) имеем

Но—Но, Л-=О (Лх+1), (и0) (u0, N) 'Хг=О (hy),

(u0)'x — (u0,N)'x =O(hN+i), a=l, 2, Vxe=Q.
a ex

Из этого утверждения, неравенства (3) и определения билинейной 
формы а(•,•() следует

Теорема 2. Если справедливы соотношения (4), то

II0 (Zo.n) ||н“(0)==0 (hy) , ||etj(zOiW) ||н°(о)=О (ЛЛ ) , |IPv(Zo,n) |1н°(0)=0 (Лл ) .

Замечание. Оценка для llzo^lhn’to))’ не вытекает из (1), так какaOr 
вообще говоря зависит от h. Но несмотря на это, Ги=0, непосредст­
венным разложением a(z0,N, z0,N) можно показать, что имеет место и оцен­
ка I|Zo,n||(h’(q))!=0(/iw) .

Институт прикладной математики Поступило
Тбилисского государственного университета 10 X 1973
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