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1. Пусть X — линейное нормированное пространство Ефимова — Стеч­
кина (*, 2), Y — рефлексивное пространство, А (Г) — секвенциально слабо 
замкнутый оператор с областью определения D(A)^X (D(T')^Y') и об­
ластью значений R(A') = Y (R (Т)=Х). Рассматривается задача прибли­
женного решения операторного уравнения первого рода

Ах=у0 (1)

с разрывным обратным оператором А-1 и задача устойчивости вычисления 
значений неограниченного оператора Т (3,4) в точке у0

Ту0=х, (2)

когда элемент у0 задан б-приближениями z/s, ||г/0—Отметим, что су­
ществование обратного оператора к Т не предполагается, поэтому задача
(2),  вообще говоря, не сводится к задаче (1), кроме того, этот переход не 
всегда удобен.

Схема решения задач состоит из двух этапов. Сначала неустойчивые 
задачи (1) и (2) регуляризуются (5, 6) методом невязки (7, 8) и нахожде­
ние приближенного решения сводится к решению задач на условный экст­
ремум, к которым затем применяется проекционный метод. В связи с этим 
возникает важный вопрос нахождения условий на конечномерные подпро­
странства, гарантирующих разрешимость конечномерной задачи и устой­
чивость конечномерных аппроксимаций.

Подобная методика для уравнения (1) применительно к методу квази­
решений В. К. Иванова использовалась в (9, 10), к методу регуляризации 
(6, 5) А. Н. Тихонова —в (2, 12), к методу невязки —в (2, 13). В этих ра­
ботах были найдены некоторые достаточные условия на семейство конеч­
номерных подпространств, обеспечивающие разрешимость и устойчивость 
соответствующих конечномерных задач.

В настоящей работе полностью решается вопрос об условиях (необхо­
димых и достаточных) на системы конечномерных подпространств в клас­
се линейных неустойчивых задач (1), (2), когда регуляризующий алго­
ритм (6) строится с помощью метода невязки.

2. Метод невязки для операторного уравнения (1) заключается в реше­
нии экстремальной задачи

inf {||х||/x^D(А), ||Ах—ув||Сб}. (3)

Условия п. 1 на пространства X, Y и оператор А обеспечивают разре­
шимость задачи (3), а в случае дополнительного требования строгой вы­
пуклости пространства X, линейности А — и единственность экстремаль­
ного элемента (см. (2, *4)).
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Теорема 1. Множество экстремальных элементов Хь в задаче (3) 
^-сходится к множеству решений Ха операторного уравнения (1), т. е.

fJ (Х8, Хо) = sup inf ||p—х||-*0 при 6-*0.
yelj хеХо

Пусть в пространстве Х(У) задана последовательность конечномер­
ных подпространств Хп (У„) и проекционных операторов Рп (()„) таких, 
что

а) РпХ=Хп (QnY=Yn),
б) ||х-Рпа:||->0 (||р-<?прЦ-*О) прии->°°,
в) Рп(Qn) — линейные операторы с ||Р„||^1 (||<2„||=^1) и РтР„= 

=Pm (QmQn=Qm) при п>т.
Примером такого семейства может служить семейство операторов мет­

рического проектирования в гильбертовом пространстве X на цепочку ко­
нечномерных подпространств Х^Хг^ ... ^Хп^Х.

Задаче (3) поставим в соответствие конечномерную задачу

inf {Ы|^(Я(Л)ПРпХ), \\Ax~р8^б}. (4)

Пусть оператор А линеен и существует А~1, а пространство X строго 
выпукло; эти условия обеспечивают единственность решения задач (1),
(3) , (4). Будем предполагать также, что проекторы Рп удовлетворяют ус­
ловиям а), б). Обозначим решения задачи (4) через Х8”.

Теорема 2. Для того чтобы Уу0ЕЯ(Л) и Vy^Y, ||г/0—J/sll^S, задача
(4) была разрешима при n^N и имела место сходимость ||X8n—Х8||->0 

при п—*~°°, необходимо и достаточно, чтобы множество |J (XnAZ)(Л)) было
п~1

всюду плотно в D(Л) относительно топологии, определяемой А-нормой; 
||;г||л=1Ы1+114а:|[.

Рассмотрим вторую схему проекционного метода в той форме, в какой 
он применялся для нелинейных операторных уравнений первого рода в ра­
боте (12). Задача (3) заменяется следующей экстремальной задачей:

inf {1к|||^(Д(Л)ПРпХ), IIQmAx-(?ту^б}. (5)

Предполагается, что проекторы удовлетворяют свойствам а) — в), тогда 
в условиях предыдущей теоремы справедлива

Теорема 3. Для того чтобы Vy0^R(Л) и Vy^Y, ||г/о—г/8||^б, сущест­
вовало такое N, что при n^N и задача (5) была разрешима и имела 
место сходимость ||ХП’™ — Х8||-»-0 при п, необходимо и достаточно,

чтобы U (Х„ПТ>(Л))=£>(Л), где замыкание понимается по A-норме, а 
П=1

Х"зт — экстремальный элемент в задаче (5).
3. Регуляризованное семейство приближенных решений в задаче (2) 

вычисления значений неограниченного оператора будем находить из реше­
ния следующей задачи на экстремум (метод невязки, стр. (3)):

ini{\\Ty\\\ye=D(T), Ну-^Кб}. (6)

Теорема 4. При выполнении условий п. 1 задача (6) разрешима и 
limsup IITz/—a:o||=0, где Ту0=х0, a Yt, — множество экстремальных элемен- 

тов в (6) при заданном уъ.
Наряду с экстремальной задачей (6) рассмотрим ее конечномерный ана­

лог в форме

inf {1|П/11|^(£(Г)п<2пУ), |1р-<2„г/вКб}. (7)

Теорема 5. Пусть Т линеен, пространство X строго выпукло, а се- 
мейство^Дщрдавл&творяет свойствам а), б).
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Для того чтобы Vy0<=D(T), y^Y, ||г/о-г/бН^б, задача (7) была разреши­
ма при n>N и имела место сходимость ||Г^вп—7’^в||-»-0 при п-+°°, необхо­

димо и достаточно, чтобы (J (У^Л^)) =5(7') в топологии, определяемой 
п=1

Т-нормой ||г/||т=||г/||+||7’г/||; здесь t/г,, уьп - решения задач (6), (7) соответ­
ственно.

В заключение отметим, что если X и У — сепарабельные 5-пространства, 
а А — линейный (слабо) замкнутый оператор с 5(4)еХ и 5(4) У, то 
всегда существует цепочка конечномерных подпространств Х^Х2— . . .^ 
~Хп~Х, всюду плотная в 5(4) относительно 4-нормы.
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