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Рассмотрим в комплексном банаховом пространстве S3 произвольный 
линейный ограниченный оператор Т. Обозначим его спектр через о (Г). 
Для любого компакта Q^o(T) назовем подпространство L(Q)cAd спект­
ральным для Т (ср. (*)), если оно инвариантно относительно Т, удов­
летворяет условию int<2<=o(7’|L((?)) c:Q (int Q — внутренность множе­
ства Q в топологии, индуцированной в о (71) из С) и является наибольшим 
среди таких инвариантных подпространств L, для которых a(T\L)c:Q.

Ймеется несколько различных конструкций спектральных подпрост­
ранств при условиях типа неквазианалитичности (по поводу сравнения 
этих конструкций см., например, (2)), а при отказе от таких условий мо­
жет вовсе не быть спектральных подпространств с Q=£g(T) (*). Если для 
каждого Q существует спектральное подпространство L(Q) и для каждо­
го семейства {(?«} такого, что Uint Qa=o(T), система спектральных под­
пространств L(Qa) полна, то Т называется оператором с отделимым 
спектром.

Э. Бишоп (3) провел глубокое исследование свойств спектральных 
подпространств в плане двойственности между Т и Т*. Один из основных 
его результатов (теорема 2) относится к произвольному оператору, в ряде 
других теорем фигурирует некоторое «условие £» или его эффективное 
усиление: функция ||7?х|| (где, как обычно, R!==(T—hI)~1') является «мо­
дулем контроля для аналитических функций», или, как мы будем эквива­
лентным образом говорить ниже,— «аналитической мажорантой». Важно, 
что условие 0 допускает в качестве спектра любой компакт в С (в частно­
сти, ему удовлетворяют все нормальные операторы).

В излагаемой работе мы, следуя подходу Бишопа, но несколько моди­
фицируя его аппарат, получаем теорему двойственности для произвольно­
го оператора при более слабом требовании на покрытие спектра, чем в (3|). 
Это дает возможность разделять спектр на стыке двух кусков при выпол­
нении соответствующей локальной формы условия [3 (обсуждение этой 
ранее нерешенной задачи см. в (4)). Глобальное выполнение условия 
обеспечивает глобальную отделимость спектра. Этим дается положитель­
ный ответ на вопрос, заданный нам М. Г. Крейном и И. Ц. Гохбергом.

Условие р можно сформулировать так: для любого открытого множест­
ва G и любого компакта K^G выполняется неравенство

sup ||f(X) ||=^G,Ksup ||(Г-Л7)/(Х) II
К G

(1)

на классе функций /(X) со значениями в S, голоморфных при k^G. В ло­
кальной форме условия р множество G фиксируется, а само условие обо­
значается через где F=C\G.

Условие аналитической мажорантности состоит в том, что на упомя­
нутом классе голоморфных функций неравенство

||/(Х)11.С||Я*||, АеС\о(П,
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влечет равномерную ограниченность ||/(Х) || на каждом компакте K-G. 
Для этого необходимо, чтобы в дополнении G\K0 некоторого компакта 
Ka<^G спектр о (Г) был нигде не плотен. Таким образом, условие анали­
тической мажорантности ограничивает топологию спектра. В случае, ког­
да mes о(Т) =0, для аналитической мажорантности достаточно, чтобы

J (i_1inlnp(^))v’di<<», (3)
о

где р(а) — функция, обратная к p(i) =mes {X: /.еС\о(Т), ||7?J|>£}, Z>0. 
В случае спектра на гладкой кривой условие (3), в свою очередь, обеспе­
чивается «условием Левинсона», фигурирующим в (*).

Введем «предспектральные» подпространства. Пусть F<=C — компакт, 
G=C\F. Следуя (3), обозначим через М(F, Т) замыкание множества тех 
а:е5Э, для которых уравнение (Т—XI) f (к) =х имеет решение /(X), голо­
морфное в G. Аналогично определяется M(F, Т*) в пространстве антили- 
нейных функционалов §3*, но замыкание берется в ш’-топологии (эта мо­
дификация в (3) отсутствует, так как там 53 рефлексивно). Рассмотрим 
далее пространство функций со значениями в 8, голоморфных и ограни­
ченных в G, наделенное топологией равномерной сходимости. Возьмем в 
этом пространстве линеал функций вида (71—V)/(X), где /(X) голоморфна 
(но не обязательно ограничена) в G. Обозначим через N(F, Т) множество 
тех х&8, которые принадлежат (как функции-константы) замыканию 
указанного линеала, т. е.

A(F, 7)) = {x:V е>0, Я/ (||(T~XI)f(X)-x\\<e)}

(см. (3)). Аналогично определяется N(F, Т*) в S3*, но замыкание берется 
в топологии, задаваемой системой окрестностей нуля:

оо _ ,
У, (%, У(М) | <8, 

А=1

где е>0, {Хй} — произвольная последовательность точек из GU{°°}, 
{xk} — произвольная последовательность векторов такая, что

00 
J1, 1М<°°.

ft=l

Теорема 1 (о двойственности). Пусть Т — произвольный (ограни­
ченный) оператор. Пусть Ft, F2 — такие компакты в С, что

OyClntOFa, (4)
где Int F, — внутренность множества Ft в топологии всего С. Пусть, нако­
нец, К,, K2t=C — непересекающиеся компакты. Тогда

N(Ft, T)±<=M(F2\ Г), M(F2, T)±<=N(Fl*, Г), (5)
M(Kt, T)^N(K2-, Г), N(Kt, T)^M(K2', Г). (6)

У Бишопа (3) требуется, вместо (4), чтобы о(Т) <=IntF1UInt7;’2. Это 
препятствует решению задачи о локальной отделимости спектра, в то вре­
мя как на основе теоремы 1 получается

Теорема 2 (о разрезании спектра по общей границе двух кусков). 
Пусть g(T)=Q1\]Q2, где Qt, Q2 — компакты, причем один из них, напри­
мер, Q2 является замыканием своей внутренности int Q2 относительно 
спектра о (Т). Пусть, далее, существует в С такой компакт Q, что int Q2^ 
<=Int Q и Qr\ts(T)=Q2. Если оператор Т удовлетворяет условию pQ„ а со­
пряженный оператор Т* — условию то существует спектральное под-
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пространство L(Qi) для Т, а для фактор-оператора Т, индуцированного Т 
на 8/L(<2i), существует подпространство A(Q2), обладающее всеми 
свойствами спектрального подпространства, кроме, быть может, макси­
мальности.

В связи с теоремой 2 отметим, что если для некоторого компакта 
спектральное подпространство L(K) существует и если выпол­

нено условие то

L(K)=N(K,T)=M(K,T)={x: x=(T-%I)f(b)}, (7)
где 7(Х) голоморфны вне К. Аналогичное утверждение справедливо 
для Т*.

Глобальное условие Р, как мы уже отмечали, влечет глобальную отде­
лимость спектра. Точнее говоря, справедлива

Теорема 3 (об отделимости спектра). Пусть каждый из операто­
ров Т, Т* удовлетворяет условию 0. Тогда Т — оператор с отделимым 
спектром. В частности, для каждого семейства компактов Qado[T), а— 
=1, ...,п, такого, что Uint Qa=o(T), соответствующая система спект­
ральных подпространств L(Qa) полна.

Последнее свойство можно существенно усилить при условии анали­
тической мажорантности.

Теорема 4 (о разложении единицы). Пусть оператор Т удовлет­
воряет условию аналитической мажорантности и Qa<=cs(T), а=1,... ,п,— 
такие компакты, что Uint^lz=a(7’). Тогда существуют такие операторы 
Ia(а=1,..., п), что ImI^L(<?а) и £1а=1.

а
Операторы 1а строятся в равномерно замкнутой алгебре, порождаемой 

рациональными функциями от Т. При этом, если то Кег/7=>
=£«?«)•
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