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ОБ АДИАБАТИЧЕСКИХ ВОЗМУЩЕНИЯХ ВРАЩАЮЩЕЙСЯ 
ЖИДКОСТИ

Будем рассматривать жидкости, термодинамическое состояние кото­
рых определяется тремя независимыми параметрами; в качестве послед­
них изберем давление р, плотность р и удельную концентрацию примеси s 
(например, удельная влажность в атмосферном воздухе или соленость в 
морской воде).

Назовем равновесным состояние жидкости (например, атмосферы 
или океана на Земле), в котором она вращается с постоянной угловой 
скоростью о, а термодинамические параметры меняются лишь по направ­
лению ускорения силы тяжести g=—gVr (г — расстояние от центра тяже­
сти) и связаны уравнением гидростатики dpa/dr=—gp0 (р0, ро — равновес­
ные давление и плотность).

Введем обозначения Г—ds J dr для равновесного градиента концентра­
ции примеси и 7V2=—(g/p0) (dpo/dr+gpo/co2) для квадрата частоты Вайсса- 
ла — Брента (с0 — равновесная скорость звука) и определим равновесную

® Л72потенциальную плотность рп соотношением------ — — —А , при-
рп ПГ

чем рп=ро на некотором отсчетном уровне г=г0, например, на уровне моря.
Назовем адиабатическими процессы, при которых в каждом 

жидком объеме сохраняются энтропия и примесь s. Адиабатические ма­
лые возмущения скорости и термодинамических параметров u, р, р, s 
будут удовлетворять уравнениям движения, неразрывности и адиабатич­
ности, линеаризованным относительно равновесного состояния:

(1)

(индексом г отмечаются вертикальные компоненты векторов).
На ограничивающих жидкость твердых стенках должна обращаться в 

нуль нормальная компонента скорости ип. Если у жидкости есть свобод­
ная поверхность г=г0+£, где £ — возмущение ее уровня (например, оке­
ан), то при г=г0 должны выполняться линеаризированные кинематиче­
ское и динамическое краевые условия ur=dt,/dt и dp/dt—gpoUr=O (поверх­
ностным натяжением и, тем самым, капиллярными волнами здесь 
пренебрегаем; динамическое условие означает, что на свободной поверх­
ности давление постоянно, т. е. что она свободна от внешних барических 
воздействий).

Уравнения (1) имеют в общем случае единственный линейный инва­
риант (т. е. не зависящую от времени комбинацию неизвестных функций)

(2)
Если А=Г=0 (термодинамически однородное равновесное со­

стояние) , то инвариантны и р—с02р и s. Имеются еще краевые инварианты 
р—gpo? и poCo2№£+g(p—с02р) при г=г0; на горизонтальных твердых 
стенках инвариантны также р—с02р и s. Наконец, интегрированием по 
объему (ограниченному сверху равновесной свободной поверхностью
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r=ro) вытекающего из (1) локального уравнения энергии
1 д I
2 dt

Г 2 1 JL £2(Р~СО2Р)2 1 , j.Г“+рл" + Р.=.^ J+dlv₽“ 0 «)

убеждаемся в существовании квадратичного интегрального инварианта — 
полной энергии возмущений

Е
1
2

g2(p-C02p)2
Po2CoW2

(4)

где dV, dh — элементы объема и горизонтальной площади.
Рассмотрим возможные стационарные возмущения. В них распределе­

ние плотности р=—(geo,) _1(ю- Vp) негидростатично (оно становится 
гидростатическим лишь в так называемом традиционном прибли­
жении oj~corVr). Если хотя бы одна из величин N и Г отлична от нуля, 
то стационарные течения горизонтальны, геострофичны, бездивергентны, 
возмущения давления не зависят от долготы X и описываются произволь­
ной функцией ps (0, г) (0 — дополнение широты), течения направлены 
вдоль кругов широты и имеют скорость щ=(2гро£Ог)_‘5р8/30; такие возму­
щения возможны лишь в моделях с не меняющимися по долготе тверды­
ми стенками и, следовательно, невозможны в реальном океане и в атмосфе­
ре над реальным рельефом (в этих случаях стационарные возмущения 
должны быть неадиабатическими). Если А=Г=0, то возможны еще ста- 

VrXVp , итционарные течения со скоростями и =----------- +----- со, удовлетворяю-
2p0tor ©г

щими условиям ur=0 при г=г0 и п„=0 на твердых стенках, причем р и иг 
связаны соотношением

др / игО)-----= 2r2po cos2 0 ( div-------
д7. ' \ сог

№ \
С02 /

Если начальные возмущения (в момент времени t==0) адаптиро­
ваны, т. е. обладают всеми указанными свойствами стационарных воз­
мущений, то они не меняются со временем. В противном случае решение 
задачи Коши для уравнений (1) наряду со стационарными возмущениями, 
определяемыми адаптированной частью начальных возмущений (при 
термодинамически неоднородном равновесном состоянии — средней зо­
нальной частью начального поля давления), включает и нестационарные 
возмущения (с равными нулю линейными инвариантами); последние 
назовем собственными движениями.

Для полей и и р собственных движений (просто выражающиеся через 
них поля риз далее здесь не понадобятся) из (1) операционным методом 
выводятся уравнения 

п Р^Р где Р

M(VP) M(um) + pm-co2pm M(Vr) . 
° 2£ОроС02pnD Z)2

(5)
gur . 4a2DP 2a>pm

div u------ r +-------— =-----—,
Co2 PnCo2 poCo

1 d
D -- ----------- , индексом m отмечена неадаптированная

2co dt
значений и введена свойственная вращающейся жидко-

2<вро ’
часть начальных
сти линейная векторная функция

М (A) =L (A) +Q~lN02LT (A) L (Vr), (?=- [D2+A02Lr (Vr) ],
L (А) = (О2+/с2) -1 [О2А-DkXA+ (к • А) к],

(6)

u +
D
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в которой Nt>=N7 (2со) и k=<o/co (в традиционном приближении k~/crVr 
и А2=ЛГ2; при этом Lr(Vr)=l). Краевое условие при г=г0 получается от­
брасыванием div и из второго уравнения (5).

Если начальные возмущения сосредоточены лишь в области, не содер­
жащей некоторых границ жидкости, то возникающие собственные движе­
ния не будут связаны соответствующими краевыми условиями, пока они не 
достигнут этих границ. В качестве примера рассмотрим собственные дви­
жения при однородном равновесном состоянии (2V=0, M=L, р=с02р), 
в которых возмущения давления отсутствуют (инерционные д в и- 
ж е н и я). Согласно (5), они возникают, когда начальные возмущения поля 
скорости удовлетворяют условию

g
div L (uro) = — Л, (um), (7)

с»2
которое вследствие независимости um от D распадается на три: поля um, 
kXura и (k-um)k должны удовлетворять уравнению div A=gc0~2Ar. Неадап­
тированные поля с такими свойствами должны быть ортогональными к и 
потому не могут удовлетворять краевым условиям на произвольных твер­
дых стенках. Таким образом, инерционные движения возможны лишь ло­
кально (что объясняет наблюдаемую перемежаемость и быстрое зату­
хание пространственной когерентности инерционных колебаний в океане).

Периодические собственные движения суть собственные коле­
бания всего объема жидкости; в них и, р, о, s зависят от времени по 
закону ехр(2гсо/0 (/ — собственные частоты, измеренные в единицах по­
лусуточной частоты 2и, которые вследствпе инвариантности полной 
энергии (4) вещественны) и должны удовлетворять всем краевым услови­
ям. Уравнения для комплексных амплитуд собственных колебаний и и Г 
получаются из (5) заменой правых частей нулями и оператора D его 
собственным значением г/:

1 мшт л- М^РУ> ^*fP лU = —-—Jf(VP), div------------------------ -— +------- — = 0. <8)
/рп Рп рпСо рпСо

Краевое условие при г=г0 получается из второго уравнения (8) отбра­
сыванием первого слагаемого. Из (8) видно, что инерционных собствен­
ных колебаний (без возмущений давления) не существует. Пространствен­
ные переменные г и 0 в уравнении (8) не разделяются из-за множителя Q 
в функции М. Исключением является случай однородного равновесного 
состояния, в котором, ограничиваясь для простоты приближением Бусси- 
неска div и=0, отфильтровывающим акустические волны, получаем для Р 
уравнение [/2V2—(k-V)2]P=0, имеющее частные решения с разделяю­
щимися переменными вида P=rneimKF„m (cos 9).

В традиционном приближении уравнение (8) превращается в прилив­
ное уравнение Лапласа, в котором переменные разделяются, так как в 
нем Q может зависеть только от г; это его свойство широко использова­
лось для изучения собственных колебаний вращающихся жидкостей в 
моделях с горизонтальными твердыми стенками (см., например, 
книги (*, 2), посвященные таким моделям атмосферы и океана). Однако 
при произвольном рельефе твердых стенок решения с разделяющимися 
переменными непригодны, и аналитических преимуществ у традиционно­
го приближения не остается.

Алгебраическое уравнение для собственных частот можно получить, 
интегрируя по объему жидкости с весом (?i2=(/3—&2)2(?2 аналогичное (3) 
локальное уравнение энергии собственных колебаний

рп* it
jPpoii u’—i/pok ■ (uXu*) — p0N^urur‘—f —— = —— div pu", (9)

poco 2ы
где звездочка обозначает комплексно-сопряженную величину. Это же 
уравнение получается интегрированием по объему с весом (ро/рп)Р*<?12
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второго уравнения (8); оно приводится к виду

VJP-M(VP)+2<21P*V<21M(VP)
4(0 72

Со2

4и2/2 г =----- (10)
gpoo J

и представляет собой алгебраическое уравнение 12 степени относитель­
но /, коэффициенты которого суть квадратичные функционалы от Р. Вы­
делив имеющие физический смысл ветви корней / этого уравнения, соот­
ветствующие акустическим, гравитационным (поверхностным и внутрен­
ним) и гироскопическим колебаниям, собственные частоты можно нахо­
дить вариационным методом, подбирая экстремали Р, минимизирующие 
последовательные корни нужной ветви.

При однородном равновесном состоянии (и, для простоты, в прибли­
жении Буссинеска) для / получается уравнение

/2J\VP\2dV+ifjP'(nXk)VPdS- J Ik VPIMF

ее
где S — полная граница жидкости, ап — внешняя нормаль к ней (в тради­
ционном приближении получается более сложное уравнение 6 степени с 
двумя нефизическими корнями). Пренебрегая правой частью (т. е. коле­
баниями свободной поверхности), получаем уравнение для пары частот 
гироскопических колебаний. При отсутствии вращения размерные часто­
ты о собственных колебаний свободной поверхности определяются мини­
мизацией по Р функционала

o2=gj I VPI4F

Для описания вынужденных колебаний (например, приливных) удобно 
ввести столбцы функций 5={u, Р, ц}, T]=g(p—с02р)/(poco22V), со скаляр­
ным произведением

S1°B2 = -^-f (и1и2, + -^—Р1Р2’+т]1ц2') p0(/V + -^-I" (13)
2 J \ рп2Со2 / gpooJ

Пусть {£?„} — полная ортонормированная в смысле (13) система ком­
плексных амплитуд собственных колебаний со всевозможными собствен­
ными частотами f„. Тогда, используя безразмерное время т=2ю1, можно 
записать уравнение колебаний, создаваемых периодическим вынуждающим 
воздействием, и его решение в виде

— = ^В+е^ УспБп, B=-ie^ V , (14)

где 2? — операторная матрица, фигурирующая в уравнениях (1), а с„ — 
коэффициенты разложения комплексной амплитуды воздействия по систе­
ме столбцов-функций {5„}.

Поскольку приливные колебания уровня открытого океана невелики 
(не превышают 2 м), все частоты /„ собственных колебаний Мирового 
океана, по-видимому, не слишком близки к частотам f приливообразующих 
сил — в противном случае существовали бы резонансные приливы катаст­
рофического характера.
Институт океанологии им. П. П. Ширшова Поступило
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