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РАВНОВЕСНОЕ ВОССТАНОВЛЕНИЕ Y3Fe5OI2,
Gd3Fe5O12 И Yi 5Gd! 5Fe50i2

Ферриты-гранаты иттрия, гадолиния и их твердые растворы широко 
применяются в технике с.в.ч. (*). При синтезе этих соединений существен­
ное значение имеют условия образования и роста кристаллов, а именно: 
равновесное давление кислорода (Ро2) в газовой фазе, температура обжи­
га (71), а также состав и структура сосуществующих фаз. В литературе до­
статочно хорошо описаны кристаллохимия (2, 3), магнитные (3, 4), электри­
ческие (s) и другие свойства ферритов-гранатов, однако нами не обнару­
жено работ по исследованию фазовых равновесий при их восстановлении.

В настоящей работе определены равновесные давления кислорода и по­
следовательность кристаллохимических превращений путем восстановле­
ния ферритов-гранатов иттрия и гадолиния и их твердого раствора 
Yt.sGdi.sFesOn наро-водородной смесью при температурах 900—1100° С. Об­
разцы синтезировали на воздухе методом бестигельной зонной плавки 
с оптическим нагревом (6). Твердые фазы, исходные и получаемые при по­
степенном отнятии кислорода, исследовались по методу Дебая в СгА«- и 
FeAa-излучениях в камере РКД диаметром 57,3 мм. Рентгенографически 
однофазные исходные образцы ферритов-гранатов, параметры элементар­
ных ячеек которых оказались близкими к данным (7~9), восстанавливались 
статическим методом в вакуумной установке с принудительной циркуля­
цией газовой смеси (Н2+Н2О) в замкнутом объеме. Давление паров воды 
поддерживали равным 4,586 мм рт. ст. (10) погружением ловушки с Н2О 
в тающий лед. Методика измерения и способ расчета равновесного давле­
ния кислорода описаны в (“). Степень восстановления (g) определялась 
по расходу водорода и убыли веса образца. За 100% принималось коли­
чество водорода, которое должно быть израсходовано, или количество кис­
лорода, которое должно быть отнято от ферритов-гранатов при восста­
новлении их до соответствующих трехокисей R2O3 и металлического 
железа.

На рис. 1 представлены изотермы lgPo2(g). Из него очевидны три 
участка: первый — до g< ~ 14%, третий — после g> ~49% и второй—меж­
ду ними. В табл. 1 представлены значения логарифмов равновесных дав­
лений кислорода и параметров кристаллических решеток рентгенографи­
чески найденных твердых фаз при 900 и 1000°. Установлено, что на 
первом участке в равновесии находятся три твердые фазы: гранатовая, ор­
тоферритовая и вюститная. Равновесное давление кислорода резко умень­
шается с ростом g, параметры кристаллических решеток R3Fe6Ol2 и RFeO3 
остаются постоянными, тогда как параметр вюстита (ав) — растет (см. 
табл. 1). Значения параметров согласуются с данными: Y3Fe5O12 (7), 
Gd3Fe5O12 (7), Y,,5Gd1.5Fe5O12 (8, 9), YFeO3 (,г, 13), GdFeOs (12), для
Yo sGdo sFeOs литературных данных не найдено.

На рис. 2 показано изменение Ов от lg Рог при 1000° С (прямая 7). Ис­
пользуя данные lgPo2 (состав) (14,15) и ав (состав) (1S) для системы Fe—О, 
построена зависимость lgPo2(aB) (рис. 2, прямая 2). Из одинакового на-
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Таблица 1 
Значения lg PQ И Параметров Кристаллических решеток сосуществующих твердых фаз прй различных степенях 

восстановления ферритов-граиатов
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При температуре 900°

5,2 -14,25 12,373 __ 5,282 5,590. 7,589 1 7,8 -14,80 12,474 — 5,353 5,612 7,662 7,3 -14,95 12,432 4,287 5,297 5,595
6,8 -14,71) 12,374 5,281 5,583 7,588 10,2 —15,31 12,477 4,292 5,344 5,607 7,665 10,5 —15,63 12,433 4,293 5,300 5,602
9,8 -15,35 12,375 4,284 5,279 5,588 7,588 и,о —15,45 12,480 4,293 5,347 5,608 7,669 12,2 -16,05 12,436 4,307 5,302 5,603

14,5 -16,33 12,375 4,300 5,281 5,581 7,590 11,8 -15,60 12,473 4,302 5,348 5,612 7,667 28,3 -16,61 — 4,312 5,301 5,594
32,0 —16,55 _ 4,308 5,285 5,583 7,593* 13,7 -16,05 — 4,310 5,349 5,611 7,669 64,3 -17,38 — — 5,302 5,602
66,5 -16,99 _ — 5,283 5,586 7,588* 16,9 —16,60 — 4,311 5,354 5,611 7,666*

31,8 —16,67 4,310 5,348 5,607 7,669»
75,3 -17,70 5,350 5,612 7,666*

7,632
7,635
7,641
7,638*
7,640*

10,8 —13,25 12,375 4,288 5,278; 5,586 7,597
12,3 -13,59 12,374 4,292 5,273 5,586 7,596
13,2 -13,75 12,375 4,298 5,277 5,590 7,599
13,5 —13,76 12,376 4,300 5,282 5,589 7,608
13,7 -14,20 4,302 5,276 5,584 7,599
22,2 —14,60 — 4,310 5,282 5,593 7,593*
47,7 —14,90 — — 5,276 5,587 7,595*

При температуре 1000»

7,1 —12,60 12,472 5,346 5,611 7,658 7,7
11,8 -13,40 12,472 4,290 5,348 5,611 7,666 10,8
12,2 -13,50 12,473 4,292 5,346 5,612 7,658 11,5
14,9 -14,00 — 4,305 5,349 5,609 7,665 14,0
25,9 —14,58 — 4,312 5,346 5,608 7,658* 15,0
69,0 -15,67 5,347 5,610 7,662* 28,0

61,2

-12,85
—13,45
-13,55
—13,95
—14,20
-14,62
-15,30

12,428
12,427
12,431

— 5,313 5,593 7,635
4,292 5,310 5,593 7,634
4,296 5,307 5,585 7,631
4,300 5,305 5,584 7,640
4,305 5,308 5,592 7,635
4,310 5,309 5,586 7,631*
— 5,310 5,590 7,632*

Параметры YsOs и GdjOs не вычислялись, а размер елементарной ячейки металлического железа 2,860j-0 003 А.
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клона линий 1 и 2 можно предположить, что состав вюстита, находяще­
гося в равновесии с ферритом-гранатом и ортоферритом, по мере увеличе­
ния степени восстановления, как и в системе железо — кислород (14_16), 

Рис. 1. Зависимость равновесного давле­
ния кислорода от степени восстановления 
Y3FesOi2 (a), Gd3FesOi2 (б) и Y1.5Gd1.5- 
■FesOu (в). 1-900°, 2-1000°, 3 - 1100° С

целиком определяется парциаль­
ным давлением кислорода в равно­
весной газовой фазе. И все изме­
нение ав (рис. 2, 7) обусловлено, 
как и в системе Fe—О (рис. 2, 2), 
неодинаковой нестехиометрией 
вюстита. Дефектность вюстита 
можно определить по дан­
ным (14,15). Сдвиг линий объясня­
ется, с одной стороны, тем, что 
прямая 2 (рис. 2) отвечает равно­
весию магнетит — вюстит, а прямая 
7 — равновесию гранат — вюстит — 
ортоферрит, а с другой стороны, 
тем, что существуют неизбежные и 
неодинаковые систематические 
ошибки в измерениях (14-16) и 
наших.

Из сказанного выше следует, 
что при восстановлении ферритов- 

гранатов не происходит заметного растворения ионов Y3+ и Gd3+ в вюсти- 
те. Следовательно, на первом участке процесс восстановления феррптов- 
гранатов Y, Gd и их эквимолярного твердого раствора может быть описан
уравнением:

/ 1—Зя \ / 2 \R3Fe50i2+ -) H2=3RFeO3+ / 1—За: \ Fs-O+ (—) Н,О. (1)

На втором участке (рис. 1) образовавшийся ранее вюстит восстанавли­
вается до металлического у-железа по реакции:

Fe1_IO+H2= (1-я) Fe+H2O. (2)

Параметры кристаллических решеток Fet-xO и Fe, как и РОг, остаются 
близки кпостоянными, что согласуется с правилом 

измеренным (17).
На третьем участке (рис. 1) ортофер­

рит RFeO3 восстанавливается до "f-Fe и 
R2O3. Неизменность Ро, с ростом g и резуль­
таты рентгенографического анализа 
(табл. 1) показывают, что при данных ус­
ловиях в равновесии находятся три твер­
дые фазы постоянного состава, а процесс 
описывается уравнением:

2RFeO3+3H2=2Fe+R2O3+3H2O. (3)
Значения lg Ро2 согласуются с данными: 

для YFeO3 (1S,19) GdFeO3 (18,2°), для 
Y0,5Gdo,5Fe03 значений lg Ро, в литературе 
нами не обнаружено. Постоянство aVK 
(2,862±0,005 А) еще раз косвенно под­
тверждает, что ни вюститная (на I и II 
участках), ни металлическая (на III уча­
стке) фазы не растворяют заметного коли­
чества ионов Y3+ и Gd3+. Отметим, что гра­

!1—х’

фаз. Значения lgPO2

Зависимость параметра 
кристаллической решетки вюсти­
та от равновесного давления кис­
лорода при температуре 1000° С. 
1 — экспериментальные данные 
при восстановлении Y3FesOi2 (а), 
Gd3FeEOi2 (б) и Yi.sGdi.sFesOia 

(в), 2-по (14~16)
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ницы первого п второго участков (рис. 1)сдвинуты в сторону больших g по 
сравнению с рассчитанными (обозначены пунктирными линиями) в пред­
положении образования вюстита стехиометрического состава (7 участок — 
до 13,3%, II — до 40%). Этот сдвиг обусловлен, как и в системе Fe—О, уве­
личением нестехиометрии х вюстита Fe4_xO с уменьшением равновесного 
давления кислорода и некоторым ростом х с температурой. Отсюда следует, 
что восстановление ферритов-гранатов иттрия и гадолиния и твердого рас­
твора Yi.sGdj.sFesOiz идет по одной схеме. Первая стадия (7 участок рис. 1, 
реакция (1)) заканчивается полным распадом феррита-граната р.з.э. на ор­
тоферрит и вюстит. На втором участке происходит восстановление вюстита 
до металлического железа. На третьем участке ортоферрит диссоциирует 
до R2O3 и Fe. Значения IgT’o, зависят от природы р.з.э. В работе (18) приве­
дены данные для всех RFeO3 (где R=p.3.a. и Y).

A priori можно предположить, что такая «схема» восстановления будет 
наблюдаться для всех R3Fe5O12 (R3+= ион лантаноидного ряда) и их би­
нарных твердых растворов R:f R^i-c) Fe5Oi2 или более сложных изоморфных 
растворов такого типа. Поскольку изменение РО1 реакции (1), как следует 
из нашего исследования, целиком определяется составом вюстита, то, 
по-видимому, значения lg Р02 для всех ферритов-гранатов редкоземельных 
элементов или их твердых растворов rJ0 RJa-c) Fe5O12 будут очень близкими 
или почти равными. Однако это предположение требует эксперпментальной 
проверки.
Институт металлургии Поступило
Уральского научного центра Академии наук СССР 24 VIII 1973
Свердловск
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