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Для теории волновых процессов в нелинейных средах важное значе­
ние имеют точные решения (*),  среди которых особое внимание привле­
кают стационарные плоские волны (см., например, (2,3)). Известны точ­
ные решения нелинейных уравнений поля в виде бегущих плоских волн

* Для простоты мы воспользуемся классической теорией дисперсии, достаточно 
хорошо описывающей явление в окрестности центра линии поглощения, т. е. по­
ложим 

e2N ( 1
Р+Г(Р, Р)Р + йо2/(Р)Р =------1 Е +----- [V-B]

ml с

Однако точные решения имеют место п при других законах дисперсии.

lh=<P«(r), T=Z — ut, (1)
тде if; — амплитуда компонент поля, фДт)—периодические (но несину­
соидальные) функции, и — постоянная скорость распространения волн. 
В простейшем случае электромагнитных волн в нелинейной среде без 
поглощения уравнения для избранных компонент поля при нулевых зна­
чениях остальных (случай линейной поляризации) приводятся к виду

1 d2ibV2t|)--^-^+EWi|)=0, (2)

т. е. функция ф(т) определяется обыкновенным нелинейным уравнением 
вида

(1—п2/с2)сГф/с?т2+У(ср)ср=0, (3)
решение которого известным путем сводится к квадратурам. Очевидно, 
функция ф(т) может быть синусоидальной лишь при У(ф) =const, т. е. в 
лпнейном случае.

Таким образом, нелинейные уравнения вида (2) не имеют решений в 
виде монохроматических бегущих плоских волн. Для уравнений такого 
вида неосуществимо и разделение переменных, т. е. не существует реше­
ний типа стоячих волн

ф(з, 0=ф1(г)ф2(г).
Эти запреты, справедливые для рассматривавшихся случаев линейно 

поляризованных волн, оказываются устранимыми для циркулярно поля­
ризованных волн. Ниже мы покажем, что для изотропно-нелинейной сре­
ды уравнения электромагнитного поля имеют точные решения в виде 
монохроматических бегущих циркулярно поляризованных плоских волн, 
а также в виде стоячих волн циркулярной поляризации.

1. Рассмотрим достаточно общий случай электромагнитного поля в 
однородной, изотропно-нелинейной, активной среде, находящейся в одно­
родном магнитном поле В', направленном вдоль оси z. Плоская волна, рас­
пространяющаяся вдоль оси z, должна быть решением системы уравне­
ний Максвелла и материальных уравнений для вектора поляризаций Р *.
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(4)

Эта система уравнений в компонентах имеет вид

——v- +--- (А+4л А) =0,
OZ С

------- (А+4лА)=0, OZ с
-^-(Ez+4nPz)=0,
dz

дЕу
dz

—А=0,
с

А- ^-[1-ф(А Р) ] А+®о2А/(А -ЙА= — Ех,
т т

V_ fj
Ру- —Ч1-Ф (А Р) ] А+®о2А/(А +йА=----- Еу,т т

х—у в e?N
Pz------- — [ 1—ф (А А ] А+®»2А/(А------- (АА-АА) = —Ez,т тс т

где х—у — ненасыщенные усиление и поглощение; Q=(e/mc)B'— лар­
морова частота; N — число молекул в единице объема; Р=(РХ2+РУ2+Р2) 
Р=(РХ2+РУ2+Р2)''2 — т. е. абсолютные значения векторов Р и Р; <р(А Р) и 
/(Р)—функции, выражающие изотропно-нелинейные свойства среды. 
Очевидно, при малых Р и Р, т.е. в линейном приближении, ср=О и /=1.

2. Плоская монохроматическая циркулярно поляризованная бегущая 
волна может быть представлена в виде

Ex=E0cos (coi—kz), Еу=±Еа sin (®i—kz), Ez=0,
A=±A sin (at—kz), By=Ba cos (at—kz), Bz=0, (5)
A=A cos (at—kz), Py=±P0 sin (at—kz), Pz=0,

где (+) для правой и (—) для левой циркулярных поляризаций.
Для волны (5) абсолютные значения векторов поля Е, В, Р соответст­

венно равны их стационарным амплитудам Ео, Во, Ро. Поэтому нелиней­
ные функции <р(Р, Р) и f(P) для такой волны соответственно равны 
<р(Ро, аР0) и /(Ро), т. е. не содержит z и t. А это означает, что так же, как 
в линейном случае, выражения (5) являются решениями системы уравне­
ний (4), если А, Во, Ро удовлетворяют условиям

/с / со2 \ СО 2ф(А, ®А)=1, во=—с — Ео, ( —А+—) А+—4лА=0, (6)
и \ с ) с

e2N 
—Poa2+ao2Pof (Ро) ±ПсоРо=----- Ео.т

Первое из этих уравнений определяет стационарную амплитуду вектора 
поляризации, второе связывает Во с Ео, третье и четвертое дают диспер­
сионное уравнение (‘)

e2N 
4л------

т
®о2/(Ро)— €£>2=Fg>Q

похожее на то, которое получается приближенным методом для линейно 
поляризованной волны (2).

Таким образом, монохроматическая циркулярно поляризованная плос­
кая бегущая волна распространяется без изменения синусоидальной фор­
мы, но ее скорость зависит от ее же амплитуды и от величины внешнего
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магнитного поля. Такое точное решение, очевидно, справедливо не только 
для изотропной среды, но и для одноосных кристаллов, если волна рас­
пространяется вдоль оси кристалла.

3. В частном случае для неактивной среды с пренебрежимо малым по­
глощением, т. е. при х—7=0, укороченная таким образом система уравне­
ний (4) имеет точные решения в виде циркулярно поляризованных 
монохроматических стоячих волн вида

Ex=E(z) cos (oi, Ey=±E(z) sin at, 
j8x==f5(z) sin (Щ, Bv—В (z) cos coi, (8)
7,I=P(z) cos coi, Py=±P(z) sin coi.

Подставляя (8) в (4) при условии х—у=0 и замечая, что анало­
гично случаю бегущих волн /(Р) =/[P(z) ], получаем для функций 7?(z) 
и P(z) систему обыкновенных дифференциальных уравнений

d2E со2
—+ —(Р+4лР)=0, (9)

(-и2+ю02/(Р)±Йй)Р=-^£. (10)
т

Разрешая (10) относительно Р и подставляя в (9), получаем уравне­
ние вида

d2E/dz2+F±(E) =0, (11)

решение которого сводится к квадратурам аналогично уравнению (3).
Итак, укороченная система нелинейных уравнений (4) имеет ре­

шение в виде монохроматических стоячих, циркулярно поляризованных 
волн, однако, как видно из (9), (10), (11), пространственная форма этих 
волн не будет синусоидальной при f(P)^i, т. е. в нелинейном случае.

4. Существует еще один тип точных решений системы нелинейных 
уравнений (4) в виде стоячих немонохроматических, циркулярно по­
ляризованных волн. В этом случае при отсутствии внешнего магнитного 
поля, т. е. при Q=0, решение системы (4) будем искать в виде

Ex—E(t) cos kz, Ey=±E(t) sin kz, ET—Ez(t), 
/<=+5 (Z) sin Az, Bv=B(t) cos kz, (12)

Px=P (t) cos kz, Py=±P (t) sin kz, Pz=0.

Подставляя (12) в (4), получаем систему обыкновенных диффе­
ренциальных уравнений, определяющих Е(t) aP(t):

к2Е+\(,Ё+4лР)=0,

к—у e2N (13)
£+й0277СР) - —[ 1—<р(Р, Р) }Р=——Е.

т т

Таким образом, задача нахождения £"(?) и P(t) свелась к решению си­
стемы обыкновенных дифференциальных уравнений. В простейшем част­
ном случае неактивной (х=0) непоглощающей (у=0) и бездисперсион- 
ной (Р=0) среды системы (13) сводится к укороченной

к2Е+\(Ё+^Р)=Ь, a*Pf(P) =—E, (14)
с т

которая эквивалентна уравнению вида (3) или (И)

W(X)=0 (15)
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Для
2.[Gio т i-2—/(Р)+4л]р, (16)

решение которого сводится к квадратурам.
5. Итак, уравнения электромагнитного поля в изотропно-нелинейной 

среде имеют решения в виде циркулярно поляризованных монохромати­
ческих плоских волн, распространяющихся со скоростью, зависящей от 
амплитуды. Существуют также точные решения в виде циркулярно по­
ляризованных стоячих волн, монохроматических, но с несинусоидальной 
пространственной зависимостью амплитуды от координаты, либо немоно­
хроматических, но с синусоидальным пространственным распределением. 
Иначе говоря, для циркулярной поляризации осуществимо разделение 
переменных.

Подобных точных решений тех же нелинейных уравнений поля не 
существует для линейно поляризованных плоских волн.

В заключение автор выражает глубокую благодарность чл.-корр. АН 
СССР Р. В. Хохлову за внимание к работе и ценные замечания.
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