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В настоящее время существует ряд прикладных теорий многослой­
ных плит, каждая из которых основана на определенной системе гипотез. 
Отсутствие единообразия делает актуальным анализ напряженно-дефор­
мированного состояния многослойных и в более общем случае неоднород­
ных по толщине плит на основе трехмерных уравнений теории упругости, 
а также создание на его основе прикладных теорий с заданной асимпто­
тической точностью. В (1_4) показано, что в этих целях особенно эффек­
тивным аппаратом является использование однородных решений в соче­
тании с асимптотическим методом.

В настоящей работе дается обобщение метода однородных решение на 
неоднородные по толщине плиты (многослойные плиты рассматривают­
ся как частный случай). При заданных на боковой поверхности плиты 
напряжениях формулируется асимптотически точная прикладная теория.

1. Пусть Q=5X[—h, h] — область, занятая плитой, 5 — срединная по­
верхность плиты, dS — граница, S, 2/г — толщина плиты, а — характерный 
линейный размер S, Г — боковая поверхность. Плита отнесена к декарто­
вой системе координат х, у, z с началом в S и осью z, ортогональной S. 
Упругие свойства плиты описываются параметрами Ляме Х=Х(£), р= 
=р(О, где z=h^, а Х(£), ц(£) — кусочно-непрерывные функции. Изуча­
ются однородные решения уравнений равновесия Ляме, удовлетворяю­
щие условию отсутствия напряжений на торцах плиты.

2. Следуя С,2), введем потенциальное решение с помощью соотноше­
ний

и(2’=а(^)5,А, vm=a(t)d^A,

e2AA-f2A=0, А=312+ЗД (1)
di—ad/dx, дг=ад/ду^ %==z/h, z=h/a.

Подстановка (1) в уравнения равновесия Ляме при удовлетворении 
граничных условий на торцах приводит к некоторой спектральной задаче 
относительно пары функций (а(£)> Р(£)).С помощью замены

а(?)=Г2Ро/"-/’2А ^(□=-r2(W")'-2W) + W)', (2)
_ Х+2ц 1 _ X

4ц(Х+ц) ’ 2р. ’ 4|1(А+р.)

эта задача принимает вид

(р»Г) "+72 [2 W)Ы) "-PJ"]+Y W=o, (3)
y7(±i)=o=-rf(±i).

Соотношения (3) являются обобщением на неоднородный случай из­
вестной спектральной задачи П. Ф. Папковича (5).

Для задачи (3) справедливы следующие утверждения.
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Теорема 1. Задача (3) имеет дискретный спектр {yj с точкой 
сгущения на бесконечности и среди 7*^=0 нет чисто мнимых.

Из (3) видно, что спектр имеет симметричную структуру, собствен­
ным значениям и соответствует одна и та же собственная функ­
ция Д. В силу отсутствия среди чисто мнимых, решения (1) при
е-*0 имеют характер пограничного слоя, локализованного в окрестно­
сти Г.

Основываясь на результатах (6), можно доказать двукратную полно­
ту системы собственных и присоединенных векторов задачи (3).

3. Введем вихревое решение (‘,2) с помощью соотношений
и^=1(Ъ>)д2В, ш(3)=0,

(4) 
е2Д5-625=О.

Подставляя (4) в уравнения Ляме и удовлетворяя граничным усло­
виям на торцах, получаем спектральную задачу

-ц-*(цО'=6Ч Г(±1)=0. (5)
Левая часть и граничные условия, как легко видеть, определяют поло­

жительный оператор Т в пространстве L2(—1, 1) с весом р,(£). Следова­
тельно, все собственные значения АДГ) =6/ неотрицательны, а соответ­
ствующую им систему собственных вектор-функций можно считать орто- 
нормированной.

Таким образом, вихревое решение, которое определяется как решение 
вида (4), соответствующее ненулевым точкам спектра задачи (5), имеет 
при е->0 в Q характер пограничного слоя.

4. Анализ задач (3), (5) показывает, что значения уо=6о=О являются 
в совокупности кратной точкой спектра и ей соответствует жорданова це­
почка, построение которой приводит к бигармоническому решению. Смысл 
этого названия определяется его видом

2

ф1+с231Ф2— J1, (£"_1+е2д„Д) <?1ФП
71=1

2

ц(1)=ае [<р2+с2д2Ф2- (gn-1+e2^„A) 32Фп] , (6)
71=1 

2

ш(1)=а ^Фг+е^АФ-е2^с„АпАФп); 
71=1

г rMS-SOdSi
L J X+2|i

Z+2p

Ci

1+2,.

0
Х+2ц

__ 5 dt,;
J - J А,+2ц
О Ci

+ fjLf i
J Ц j Х+2ц J 
о Ci

(7)

C2Л
w+ц) S(j{i.1 . f

X +2ц* J X+2|r

756



-1 -1

здесь Ф,(;г, у) — бигармоническая функция, заменяющая собой решение 
уравнений плоской теории упругости с обобщенными упругими парамет­
рами X*, ц‘; а Ф2(а:, у) — бигармоническая функция, которую с точностью 
до членов О(е2) можно принять за прогиб плиты; <р,, <р2 — сопряженные 
гармонические функции, связанные с Ф,,

Л*4"2[х‘ 
51ф1=а2ф2=-—— дф, з2<р,=-з,ф2.

2 (Л +ц )

Формулы (7) определяют внутреннее деформированное состояние пли­
ты (напряжения определяются по (7) с помощью обобщенного закона 
Гука). Подчеркнем, что при отсутствии напряжений на торцах эти форму­
лы дают точный закон распределения напряжений и перемещений по тол­
щине плиты вдали от Г и поэтому могут служить критерием правильности 
той или иной прикладной теории. Из (7) при достаточно малом е и мед­
ленно меняющихся функциях Ф„(ж, у) вытекает справедливость гипотез 
Кирхгофа для плиты с произвольно меняющимися по толщине упругими 
свойствами.

5. Применение асимптотического метода в форме (*,2) позволяет сфор­
мулировать краевую задачу для функций Ф,, Ф2, когда на боковой поверх­
ности Г заданы напряжения о„°, т„,°, т„А Имеем

+ [ц'Ф1+(Ц1’-с2ц')Фг] las=7V,
os R дп /

+ ^,Ф1+^2*_С2*1 ^®2^9S=^’ (8)

здесь п, s — естественные безразмерные координаты контура dS, R(s) — 
его кривизна,

1 1 1

N(s)=e Jo„°dS, Г (s) =е J т„,° d£, z (s) =e2 J rnz dg, 
-1 -1 -1

d2= j 4|^+,И)- h/= f n:2 d^.
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Решение краевой задачи (8) определяет внутреннее напряженное со­
стояние с погрешностью порядка е. Для плиты симметричного строения 
коэффициенты g1*=c2=di=0 и задача (8) разбивается на две независи­
мые задачи относительно функции Ф1 и функции Ф2. Первую можно рас­
сматривать как задачу об обобщенном напряженном состоянии плиты с 
упругими параметрами X*, ц*, вторую — как задачу изгиба.

Автор благодарен И. И. Воровичу за постановку задачи и внимание к 
работе.
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