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1. Пусть (Q, 21, вероятностное пространство, И — сепарабельное 
гильбертово пространство с метрикой (■, •), Я->£2(<2, 21, — линей­
ное непрерывное отображение или случайная функция 2-го порядка со 
средним ЕЪ, (7г) =0 и корреляционным функционалом Е1- (/г,) g (fe2) = (Zii, h2). 
Функционал {£, И} назовем полем в Rn, если каждому открытому подмно­
жеству G в Rn поставлено в соответствие замкнутое подпространство 
Я(С)<=Я_так, что Я(Я)сЯ(Я1), если G^G,; Я(Я„)=Я, Я(0) = {О}; 
Я(G) =иЯ(G\3eG), е>0, где deG — е-окрестность границы dG области G. 
Для произвольного множества F в Яп определим подпространство H(F) + 
в Я; Я(Я)+=ПЯ(Я,), е>0, где Я—е-окрестность F и о-алгебру о(Я)+= 
=Г1о(Я), е>0, где o(G) — наименьшая о-подалгебра 21, относительно ко­
торой измеримы случайные величины {g(7i), h^H(G)}.

Фиксируем некоторое семейство открытых множеств {G} и замкнутую 
окрестность нуля L в Я". Поле назовем Z-марковским относительно 
{G}, если VG алгебры o(G+L) + и o(Gc+i) + в сумме дают алгебру о(Яп) 
и условно независимы относительно L-гранпчной алгебры o(dLG)+. Здесь 
и ниже G°=Rn\G, Gi±G2 — арифметические сумма и разность множеств, 
dLG=dG+L.

В настоящей заметке дается описание Я-марковских гауссовских по­
лей. Законченные результаты ранее получены в однородном случае для 
полей с дискретным временем в (*)  и для линейно регулярных процессов 
в (2,3). Общий случай полей с марковским свойством, £={0}, рассматри­
вался автором в (4).

Поле {£, Я} назовем L — зависимым относительно семейства от­
крытых множеств {G} в Яп, если алгебры o(G\3LG) и es(Gc\dLG) неза­
висимы. Рассмотрим гильбертово пространство Я*  линейных форм Z= 
= (Л, •), h^H на Я с естественной метрикой ||Z||.=||7»||. Случайную функ­
цию £*:  Я*э(А,  51, на Я*  назовем сопряженной {£, Я}.
Она остановится полем в Я" при следующем определении подпространств 
Я*(б)сЯ*,  отвечающих открытым множествам G<^Rn: Н*  (G) = 
{I, h)=0, h^H (Gc)+). Имеет место двойственность полей: (|’)*=£,  
[Я*(б)  ]*=Я(б?)  и биортогональность: Eg‘(Z)g(/i) =<Z, h>, о(Яп|*̂)  =
=о(Я"|§). Для обычных полей Я*  есть пространство, воспроизводимое 
ядром корреляционного оператора сопряженное поле V в случае ди­
скретного времени есть неинтерполируемая компонента поля g: g(‘= 
=&—где Я — оператор условного среднего в широком смыс­
ле. При этом надо требовать, чтобы о(Я’г|^)=о(Яп|*̂).

• В дальнейшем все рассматриваемые поля считаются гауссовскими. Со­
вокупность множеств {G}, если она состоит из всех открытых подмножеств 
Яп, в формулировках утверждений опускается.

Теорема 1. Поле {£, Я} является L-марковским относительно се­
мейства подмножеств {G} в Rn тогда и только тогда, когда: а) сопряжен­
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ное ему поле L-зависимо относительно {G}; б) g дь-регулярно, т. е. 
Н (G+L)+()H(fic+L)^H (dLG)+.

Первое условие эквивалентно (/—/)-локальности унитарного изомор­
физма V: (h, • пространств Н*  и Я, т. е. если supp l^G\dLG, или, что 
то же, l^H*(G  \dLG), то supp Vl^G+L или Vl^II(G+L)+. Второе усло­
вие можно заменить требованием H\(dLG)c) =Н’(G\dLG)+H*  (Gc\dLG).

Теорема 1 является следствием данных определений и следующего 
факта: в гауссовском случае условие /«-марковости поля равносильно ор­
тогональному разложению пространства

H=[H(G+L)+eH(dLG) + ]®H(Gc+L)+.

Поле {£, Н} назовем обобщенным, если пространство основных функ­
ций Л. Шварца Ф (Яп) вложено 1 : 1 непрерывно и плотно в Н, причем 
Я(С) есть замыкание {среФ(/?"), supp qj^G} в Я.

Теорема 2. Если сопряженное поле {£*,  Я*}  обобщенное, то следую­
щие условия эквивалентны: а) {£, Я} — L-марковское-, б) {£*,  Я*}  L-за- 
висимое, в) метрика в Н*  на плотном подмножестве имеет вид

(<Р,‘Ф).= ей ak,i (х-у, у) (х)ф(!> (у) dx dy,

где k, I — мулътииндексы вида {к,,..., кп), <p(i) — частная производная по­
рядка |/с | =к,+.. ,кп, отвечающая к; функции а&, i^L^0K (RnXRn) и от­
личны от нуля в конечном числе на любом компакте', носители 
suppaA,г(-, у) s (/—/«) для каждого фиксированного у. Если L={0}, ядро 
билинейной формы (•, •). определяется обобщенным дифференциальным 
оператором (4).

Это утверждение вытекает из непрерывности билинейной формы 
(•, •)*  на пространстве Ф (ЯПХЯП) и теоремы 1.

Рассмотрим случай, когда одно из полей £ и V является обобщенным 
и однородным. Если это условие выполнено для поля {£, Я}, то Я совпа­
дает с замыканием Ф(ЯП) в метрике ||<р||2=$ | ср 12F(dk), где ср — Фурье- 
преобразование <р, F(dk') — спектральная мера § не выше степенного рос­
та: $ (1+1А |)“pF(dk) <о° для некоторого р^О. Пространство Я’ состоит из 
обобщенных функций вида Ф(/)=$е'(‘’’’)Ф(йА,), где мера Ф(Дк)XF(dX) 
и ||Ф||.2=$|Ф(<А) |*/F(dX).  Из предыдущей теоремы получается как след­
ствие

Теорема 3. Если 1//(Х) — спектр однородного обобщенного поля 
{V, Я*},  то условие L-марковости поля {£, Я} равносильно представлению 
/(X) в виде

/и)=1/ £
OaS|M«gm

где цА — конечные меры с носителями в (L-L), .. ,кпкп-
В случае /={0} 1// есть полином (4).
Это предположение охватывает случаи обобщенных однородных и ло­

кально-однородных полей, для которых 1// (/ — спектр поля) имеет сте­
пенной рост. Отличным от них примером может служить поле со «спект­
ром» /(X) =П (V/sin2 TXi), i—l,...,n. Поле определено на элементах 
вида ф*е г, где фе/2(Я"), ет — характеристическая функция куба Кт с 
ребром 2Т и центром 0. Это поле /-марковское (//=ЯТ) и сопряжено 
обычному однородному полю (t)=ceT*b,  где b — «белый шум», с= 
= (8л)-"/2.

Свойство /-марковости относительно {G} назовем невырожденным, 
если VG алгебра o(dLG) + отлична от o(G+G)+ и o(Gc+//)+, когда dLG 
составляет правильную часть G+L и GQ+L.

Теорема 4. Для того чтобы однородное обобщенное поле с абсолют­
но непрерывным спектром обладало невырожденным L-марковским 
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свойством относительно полупространств в Rn, необходимо и достаточно 
чтобы функция 1//(А) продолжалась до целой функции экспоненциального 
типа в Сп с Р-индикатором:

sup lim r~l ln|/_* (A+irca) Ic max <co, t>, ca^Rn-, (1)
A r->oo

и Inf (A+ir®)/(H-x2)eL1(/?Ii) при почти всех А из плоскости <А, и>=0.
Пусть И72 — пространство целых функций, получаемых преобразовани­

ем Фурье финитных функций из L2(7?n). Определим V-supp f<=Rn для 
каждого /е1У2 как носитель Фурье-преобразования / в L2. Для произ­
вольной целой функции экспоненциального типа, для которой множество 
{феЖ2: /ф^Ж2} не пусто, будем говорить, что \Asupp f—F, если 
V-supp (<p-/)sF+V-supp ф для каждой допустимой функции феИ72.

Теорема 5. Для невырожденной L-марковости однородного поля со 
спектром /(А) необходимо, чтобы i/f была целой функцией экспонен­
циального типа с V_SUPP f-'—L—L и существовали целые функции z„: 
|zn(A) |2//(А)|г71(А+гц) | <е!ц|/"; и достаточно, если дополнительно 
гп-*Л  равномерно на компактах в Rn.

Замечание. Пусть, например, /(A)>g(|A|), где g(х) — монотонно 
убывающая функция и | In g(x) |/(1+х2)е£1. Тогда существует целая 
функция z^W1, такая, что |z(eA) | //(А) <се, е>0 (5) и, следовательно, ус­
ловие Л-марковости равносильно условию V-supp Этот случай
рассмотрен в (6) для L={0} при несколько отличном определении носи­
теля /_|.

3. Остановимся на основных моментах доказательства наиболее су­
щественной теоремы 4. Доказательство основано на следующих леммах.

Лемма 1. (Л. Де-Бранж, (3)). Пусть о — мера на прямой,

|o(da;)|<oo, J e'txo{dx) =0, |i|<T.

Тогда для всякой целой функции экспоненциального типа а<Т, /(z)e 
еЬ|Я|‘ имеем:

а) Sf(^)o(dx)=0;
б) |/(2) |=^соет|г|D/Ц|0[, где Ц-Цр^-норма в Lj“.
Отсюда, используя теорему Фубини, получаем утверждение:
Лемма 2. Лусгь/(А)еЬ‘(7?п), 1п|/(А'+хм) |/(1+х2)еТ,1(йх1) при поч­

ти всех К' из плоскости <Л', са>=0, где со — единичный вектор в Rn. Тогда 
пространство Lfp(T+, ю) = (]Lfp (Т+, е, со), где Ltp(T, со) — замыка-

8
ние линеала экспонент х>, | <i, со> | <Т} в L” с весом f, состоит из эле­
ментов u^L,p, для которых функции R'^x-^u^'+xca) при почти всех К' 
продолжается до целой функции экспоненциального типа степени ^Т.

В теореме 4 требование невырожденности L-марковского свойства от­
носительно полупространств {G} означает, что H(G+L) ©#(G)#={0}. От­
сюда вытекает Н (G) 6H(GC)^ {0}, что равносильно условиям леммы 2. 
Дальнейшее доказательство необходимости почти дословно повторяет до­
казательство, предложенное в (3) для случая п—1. Оно приводит к усло­
вию аналитичности функции 1//(A'+zco) в С*  при почти всех А' из плоско­
сти <А, со>=О и всех со. Отсюда с учетом теоремы Сичака (7) о сепаратно 
аналитических функциях следует аналитичность 1//(А) в С".

Остановимся на достаточности условий. Пусть для простоты /(А) = 
=/(Ai, Аг), со=(1, 0) и /е7?(7?2). Пусть диаметр L в направлении со равен 
2Т и 1//(А) — целая функция экспоненциального типа, порядок которой 
<27 при каждом А2. Докажем ортогональность пространств Н(G+L)+© 
еЯ(^С)+ и tf(G‘+Z,)+©#(SLG)+, где G={i=(L, f2), |* 2|<oo}
и множество dbG — полоса ширины 2Т. В спектральных терминах задача 
эквивалентна доказательству ортогональности в Lf2 элементов h*,  принад-
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лежащих соответственно подпространствам Z±(7)©Z°(T+), где Z°(7’-f-) = 
—Lf2(T+, со), Z“(T), a=+, —, — замыкания в Lf2 линейных комбинаций экс­
понент ei<('х>, t^T, |Z2|<o°, если а=—, и —Т, если а=+. Допустим про­
тивное: (Zi+, h~)f^=Q, (•, •)/ — метрика в Z./, для некоторых fe“eZ“ (Г). Мож­
но считать, что 7i“=g“+<pa, где ga=Sei!A'ijk(X2)eZ±(7’), k<N, th<T для g~ 
и th^—T для g+, a tp±eZ°(7+), т. е. по лемме 2 ф±(-, Х2), для почти всех
%2 целые функции степени Т. Это следует из плотности тригонометриче­
ских полиномов по Xi в Z*  (7).

По теореме Фубини найдем множество 6(Х2) на прямой Л,2, mes6(X2)> 
>0, что (Zi+, Л~)щ,м)*0,  Х2е6(Х2) и ||Л-±||/(. ха)=И=О. (Здесь (■•, •)/(•,м) - мет­
рика в Л2 с весом /(•, Х2), %2 — фиксировано.) С другой стороны, из 
{h±, if>ei<2X2)/=0, ipeZ°(7+), |^2|<°°, находим, что для всех к2^1{'К2') = 
=б\бо, где mes6o(X2)=O и любого фиксированного счетного набора 
eZ° (7+), (Zt±, Фп) ,(, хз)=0; In f(x, Х2)/ (1+z2) е£*  (Я?).

Пусть А —достаточно малый отрезок на оси %2, такой, что Af~)6i(X2) == 
=б2 (Л2), mes 62 (Х2) >0. Последовательность можно выбрать так, чтобы 
функции Л2) для всех Х2е62.(%2), исключая множество меры
нуль, задавали базис в 1°(Т+ |Л2). (Пространства Z“(7|Х2) а=+, —, 0, оп­
ределяются аналогично Za(7) для веса /(•, Х2).) Действительно, пусть 
co(z, Х2) — целая функция z с нулями zn(X2) в верхней полуплоскости, для 
которой | со (Zj, Х2) |2=/_1(М, Х2) п.н. по Х2. Существование такой функции 
вытекает из теоремы Н. И. Ахиезера и условия невырожденности марков­
ского свойства. В силу гладкости /"*  и ®(z, Х2), нули zn(X2), взятые с уче­
том кратности, могут быть выбраны на отрезке А так, чтобы z„(X2) были 
измеримы на А. Определим функции

(%2) с(Х2)
(Х2) z„(^2)

i|)n=Vlmz„(A,2)cd(A,i,X2) I I - -----J-J- X1-Z;
IsSt'sgn— 1

где с(Х2) — характеристическая функция множества б2(Х2) функции 
■фп(Х)еА/ и согласно (8) образуют базис в Z°(7|X2). Таким образом, мы 
построили ненулевые элементы Л±(-, Х2)^Z* (71Х2)®Z°(Т+1%2), %2еб3(Хз), 
mes63>0, для которых (h+, h~) /<-, ы^О. Это невозможно в силу того, что 
l//(z, Х2) — целая функция переменного z, степени 2Т (2, ’).
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мание к работе.
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