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Крупнейшим достижением молекулярной биологии в последние 
10—15 лет стало установление способности живых организмов восстанав­
ливать (репарировать) повреждения генетического аппарата клеток. Наи­
более универсальным механизмом репарации является темновая репара­
ция, состоящая из пяти последовательных реакций: надрезания ДНК 
вблизи повреждения, выщепления поврежденного участка из ДНК, рас­
ширения образовавшейся бреши, ее репаративной застройки и соединения 
вновь образованного фрагмента ДНК с предсуществовавшей нитью. Тем­
новая репарация была найдена в клетках бактерий (1_2), фагах (3), 
в опухолевых (4~6) и нормальных диплоидных клетках (7_8) млекопи­
тающих и человека. Однако попытки обнаружения системы ферментов 
темновой репарации в растительных организмах и в культуре раститель­
ных клеток (9-10) окончились безуспешно.

Одна из основных трудностей в обнаружении феномена темновой 
репарации у растений обусловлена низким включением радиоактивного 
тимидина в растительную ДНК (1,_12). Поэтому естественно, что мы преж­
де всего попытались достигнуть высокой степени включения радиоактив­
ного тимидина в ДНК эмбрионов растений. Работу проводили с эмбриона­
ми чины посевной (Lathyrus saliva L.). Семена готовили так, чтобы избе­
жать бактериального загрязнения (13). Эмбрионы отделяли от семян и 
переносили в стерильные чашки Петри, содержащие среду Уайта с до­
бавкой пенициллина (10 мкг/мл), Н3-тимидин (60—80 мкС/мл, советский 
препарат) и аденин (150 мкг/мл, «Calbiochem», США). После 88-часового 
инкубирования в темноте при температуре 21° («Colora Box», Швеция) 
эмбрионы (45-эмбрионов, общий вес 3,5 г) подвергали ультрафиолетовому 
облучению двумя бактерицидными лампами БУВ-15 с расстояния 18,5 см. 
Сразу после облучения и спустя определенные питервалы времени отби­
рали пробы, замораживали их в жидком азоте, затем выделяли из них 
ДНК по Мармуру. Определяли степень включения радиоактивного тими­
дина в ДНК (индекс мечения, указывавший количество импульсов в ми­
нуту на 1 мкг ДНК) и снимали спектральные характеристики ДНК. Спектр 
поглощения ДНК измеряли в автоматическом регистрирующем спектро­
фотометре SP 8000 (фирмы «Руе Unicam», Англия). Подсчет радиоактив­
ности вели в диоксановом сцинтилляторе в счетчике «Mark II» фирмы 
«Nuclear Chicago» (США). После этого препараты ДНК гидролизовали 
в 85% муравьиной кислоте (VEB «Apolda», ГДР) при 175° в вакууме 
в течение 90 мин. Гидролизат наносили на хроматографическую бумагу 
Ватман № 1 и подвергали одномерному хроматографическому разделению 
компонентов в среде бутанол : вода (86 : 14) с трехкратным пропусканием 
раствора или двухмерному разделению (бутанол — вода 86 : 14, двухкрат­
но, и насыщенный (NIL^SO; —EU CHaCOONa — изопропанол 40:9:1, 
однократно). Хроматограммы разрезали на участки длиной 1 см, элюиро­
вали материал в воде (1 мл) и подсчитывали радиоактивность элюата в 
диоксановом сцинтилляторе.
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Предварительно была определена димеризация тимина в чистой расти­
тельной ДНК. Использование богатой питательной среды для выращива­
ния эмбрионов (среда Уайта) и достаточно высокая концентрация тими­
дина, а также добавление в среду аденина, способствующего большему 
включению метки (14) в ДНК, позволили нам получить растительную ДНК 
высокой удельной активности (500—750 имп/мин на 1 мкг ДНК). При 
облучении такой ДНК увеличивающимися дозами ультрафиолетового све­
та была снята кинетика димеризации тимина (рис. 1). Подобно тому как

Поза, обучения——

Рис. 1 Рис. 2
Рис. 1. Кинетика димеризации тимина в ДНК чины по­
севной. Указано среднее квадратичное отклонение по 
Пуассону. Облучение одной лампой БУВ-15 с расстоя­

ния 18 см
Рис. 2. Кинетика выщепления димеров тимина из ДНК 
проростков чины при инкубировании их после облуче­

ния в темноте

это было найдено в экспериментах с ДНК, бактерий, фагов и клеток куль­
туры тканей, в растительной ДНК кинетика димеризации подчиняется 
уравнению первого порядка. Линейность димеризации сохраняется вплоть 
до 5-й мин. облучения, после чего кривая выходит на плато. Количествен­
но хроматографический анализ показал, что максимальное число димери­
зуемых (находящихся рядом в ДНК) тиминовых остатков приближается 
у чины к 1,3%. Для сравнения можно указать, что Троско и Мансур (9_1°) 
смогли отметить наличие 2,2% димеров тимина в клетках культуры 
Ginkgo biloba L., 0,4% в клетках табака и 1,1% в клетках Haplopappus.

После снятия кривой димеризации тимина, мы решили, учитывая 
поглощение света тканями эмбриона, увеличить дозу облучения в 3 раза 
по сравнению с дозой, дающей максимальную димеризацию. При этом, 
конечно, внешние ткани получали дозу больше максимальной, а внутрен­
ние подвергались слабому облучению, и димеры в них не образовывались. 
В результате этого внутренние ткани эмбрионов давали только тиминовую 
радиоактивность, что приводило к «разбавлению» димеров и уменьшению 
пропорции — димеры тимина/тимин за счет увеличения пика радиоактив­
ности тиминовой области на хроматограммах. Максимальное число диме­
ров составило в этой серии опытов 0,12%. При инкубации облученных 
эмбрионов в среде Уайта без Н3-тимидина происходило вырезание диме­
ров тимина из ДНК (1абл. 1). К 6-у часу инкубирования вырезание ди­
меров прекращалось. В это время около 70% димеров тимина было уда­
лено из ДНК растений (’5). Основное вырезание происходило в первые 
6 час. инкубирования.

Учитывая этот результат, в последующих экспериментах мы изучали 
процесс вырезания диамеров только до 6-го часа инкубирования в тем­
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ноте. В качестве радиоактивной метки в этой серии использовали 2-С14-ти- 
мидин, а анализ вырезания проводили как с помощью одномерной, так и 
двумерной хроматографии (табл. 2). Полученные в этой серии опытов 
данные подтвердили вывод о существовании явления вырезания димеров 
тимина из ДНК интактных проростков чины, подвергнутых ультрафио­
летовому облучению. Вплоть до 6-го часа инкубирования сохраняется 
одноударная кинетика вырезания димеров (рис. 2).

Таблица 1

Димеризация тимина в ДНК эмбрионов чины под действием 
ультрафиолетового облучения и вырезание димеров 

из ДНК в ходе темновой репарации

Время инкуба­
ции эмбрионов 
после облуче­

ния, час.

Радиоактивность, 
имп/мин Число 

димеров 
в ДНК 

(TT/T), %

Доля выре­
занных из

ДНК диме­
ров, %димерная 

область
тиминовая 

область

Контроль (без 
облучения)'

38 266520 0,014 0

То же 24 322999 0,007 0
» » 20 173993 0,011 О1

0 246 199468 0,123 0
2 92 212097 0,043 65
6 65 176847 0,037 70

12 458 566199 0,081 34
28 248 404425 0,061 50
46 215 305521 0,071 43

Таблица 2

Вырезание димеров тимина из ДНК проростков чины в темноте и исчезновение 
димеров тимина на свету

№
опыта

Длительность 
инкубирования

Вид хрома­
тографии

Радиоактивность, 
имп/мин Содер­

жание 
димеров 
(ТТ/Т), %

Доля 
димеров, 
вырезан­
ных из 
ДНК, %

Среднее 
по всем 
опытамдимерная 

область
тимино­

вая 
область

1 Контроль (без Одномерная 14 131125 0,011
3 облучения) Двумерная 10 127802 0,008 — ■
1 Без инкубации Одномерная 852 567330 0,150 —
2 (сразу после 

облучения) » 258 232700 0,111
3 Двумерная 825 444972 0,185 —
4 » 94 38016 0,247 —
1 1 час в темноте Одномерная 845 548320 0,154 0 0,83 Двумерная 704 385795 0,182 1,6
1 4 часа в темно- Одномерная 582 423070 0,126 16,0
2 те » 139 161410 0,086 22,6 17,43 Двумерная 755 472814 0,160 13,5
1 6 час. в темно- Одномерная 580 492290 0,118 22,0
2 те » 124 135820 0,091 18,1 28,63 Двумерная 496 398387 0,125 32,4
4 » 36 24991 0,144 41,7
2 6 час. на свету Одномерная 62 98559 0,063 43,3 38,54 Двумерная 63 38323 0,164 33,6

В клетках проростков чины удается также обнаружить исчезновение 
димеров тимина из ДНК при освещении проростков видимым светом. Для 
изучения этого процесса (по своей природе являющегося, по-видимому, 
фотореактивацией) часть материала после ультрафиолетового облучения 
оставляли в течение 6 час. на свету (одна люминесцентная лампа) и за­
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тем в этих проростках анализировали процентное содержание димеров 
тимина по методу, описанному выше. Данные этой серии опытов приве­
дены в табл. 2 (две последних строчки). Было установлено, что около 40% 
всех возникших в ДНК димеров исчезало (возможно восстанавливалось 
в мономерное состояние) после освещения видимым светом. Важно под­
черкнуть, что на свету происходит устранение большего числа димеров 
тимина, чем в темноте. Однако в обоих случаях устранению подвергается 
менее половины всех возникших в ДНК димеров тимина. Напомним, 
что и в другой исследованной системе клеток высших организмов (клет­
ки млекопитающих) отмечено также выщепление лишь около половины 
(иногда до 70%) всех возникших димеров тимина (4_3).

Таким образом, в наших экспериментах удалось установить наличие 
первых двух этапов темновой репарации, заканчивающихся вырезанием 
димеров тимина из ДНК. Тем самым показана универсальность распро­
странения темновой репарации в живом мире. Растения, у которых ранее 
не удавалось установить существование темновой репарации, обладают 
этим важнейшим для жизнедеятельности ферментным аппаратом.
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