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ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РАВНОВЕСИЯ 
ЛЕГГЕМОГЛОБИНА ЛЮПИНА (LUPINUS LUTEUS L.) 

И НЕКОТОРЫХ РОДСТВЕННЫХ ГЕМСОДЕРЖАЩИХ БЕЛКОВ

Исследования последних лет показали глубокую связь между окисли­
тельно-восстановительными (О-В) (’) и кислород-переносящими свой­
ствами белков семейства миоглобина (2). Для выяснения функциональ­
ной роли леггемоглобина (Lb) клубеньков бобовых, всегда присутствую­
щего в условиях активной азотфиксации, важно изучить его О-В свой­
ства. Первые результаты определения Ет° Lb сои (3) оказались совер­
шенно несовпадающими с недавно опубликованными измерениями Е™ 
того же белка (4). С другой стороны, Lb люпина, при всей близости к 
Lb сои, проявляет ряд существенных отличий (по аминокислотному со­
ставу, pH-зависимости, кинетике рекомбинации с СО и др.). Все это де­
лает необходимым исследование Em° Lb люпина. Для более полного изу­
чения родства Lb с мономерными представителями глобинов в настоящей 
работе сравнены О-В свойства Lb с гемоглобином личинки Chirononius 
thummi thummi (HbCTTIII) (5) и миоглобином дельфина Delphinus 
delphis (MbDD). Было изучено влияние температуры на Ет° Lb люпина, 
что расширяет исследование (4).

Леггемоглобин получен из клубеньков желтого люпина (Lupinus lute- 
us L.) по методике (6,7) и представлял электрофоретически гомогенную 
фракцию главного компонента. Концентрацию мет-Lb в 0,05 М фосфат­
ном буфере pH 6,5 определяли из емм=9,20 при 498 нм. Миоглобин был 
получен из центральной мышцы черноморского дельфина (Delphinus 
delphis) (совместно с Св. Митовой) и хроматографирован на КМ-сефа- 
дексе G-50 в 0,05 М фосфатном буфере pH 6,8. Концентрацию основного 
компонента мет-Mb определяли из eMW=9,50 при 504 нм. Гемоглобин 
Hb СТТ как чистая мономерная фракция III был любезно предоставлен 
д-ром К. Герзонде и был использован без дополнительной очистки. Его 
концентрацию в мет-форме определяли из емМ=9,40 при 499,5 нм (pH 
6,5) или в СХ_-мет-форме из емм=10,7 при 540 нм.

Измерение редокс потенциалов (Ет°) проводили главным образом по­
тенциометрическим методом (только на примере Mb DD было проведено 
сопоставление Ет° с результатами спектрофотометрического определения 
пары — Mb и толуидиновый синий по измерениям поглощения при 556 нм 
и 603 нм). Была принята нормировка (*) — при восстановлении белка 
электронный потенциал пары Pt — каломель уменьшается. Калибровку и 
контроль шкалы Ет° проводили по потенциалу растворов равных концент­
раций ферро-феррицианида (Ет°=430 мв) и восстановленного/окисленно- 
го антрахинон ^-сульфоната (АБС) (Ет°=—234 мв). Точность измерения 
электродного потенциала была выше 1 %. Ячейка с вращающимся Pt-элек­
тродом продувалась чистым аргоном 30—50 мин. до начала измерения 
и в течение всего опыта. Свежевосстановленный АБС дозировали шпри­
цем с микрометрическим винтом в раствор белка (2—8 мг/мл) в 0,05 М 
фосфатно-боратном буфере постоянного состава. В раствор добавляли 
0,01—0,03 мг/мл красителя (толуидинового или метиленового синего) в 
качестве переносчика электронов. Основной набор измерений проводили
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при 25+0,1° п только для определения энтальпии О—В равновесия Lb 
измерения вели также при 20 и 30±0,1° с повышенной точностью опре­
деления Ет0 в условиях, аналогичных (8). Степень восстановления (У) 
контролировали спектрофотометрически :

восстановление Lb
У=----------------------------------------------- ,

(окисление) + (восстановление) Lb

и вносили в электродное уравнение
У

1-У • Значение ре-

докс-потенциала (Ета) для условий опыта находили из условия £"’= 
| У=0,5 (рис. 1)^ Наклон касательной в этой точке определяет п= 

= (2,303RT/F) • [Sig (У/(1— У))/3(1/7’) ]. Энтальпию редокс-равновесия 
(Д#') Lb люпина определяли из температурной зависимости Ет° гра­
фическим способом:

—- “'-«“•да.-
Изменение свободной энергии системы при изменении редокс-состоя- 

ния рассчитывали по простому соотношению \G--nF-Em.
Результаты исследования показаны на рис. 1—3. На рис. 1 представ­

лены данные потенциометрического титрования Lb люпина при 25° и 
pH 5—9, на основе которых определены 
значения Ета. Абсолютные значения 
Em Lb люпина в интервале pH 5—7 
почти совпадают со значениями Ета 
Lb сои (4), но зато значения п для пер-

Рис. 1. Кривые потенциометрического титрования леггемоглобина люпина при 25" 
при разных значениях pH 5,3—9,0 (слева — направо): левая ордината, нижняя аб­
сцисса — результаты измерения Еа от степени восстановления; правая ордината, 
верхняя абсцисса — линейные зависимости логарифма констант окислительно-вос­
становительного равновесия от электродного потенциала (наклоны _равны п на 

рис. 2а). Значения Ет° соответствуют Е° при У=0,5 (lg У(1—У)=0)
Рис. 2. pH-зависимость параметров реакции окисления-восстановления леггемогло­
бина люпина (Z). мономерного гемоглобина личинки хирономуса (2), миоглобина 
дельфина (3) в 0,05 М фосфатно-боратном буфере, а — зависимость эффективных 
значений п; б — зависимость Ет° (горизонтальными тонкими линиями указаны пре­
дельные значения изменения Ет°, обсуждаемые в этой работе; вертикальным пунк­

тиром — значения середины сигмоидных кривых)

вого белка больше единицы (рис. 2а) и аналогичны с НЬСТТШ. Значе­
ния Ет° для Hb GTTIII и Mb в интервале pH 5,5—8,5 хорошо согласуются 
с результатами (5) на НЬСТТШ и Mb кашалота. Общей чертой трех 
кривых (рис. 26) является их сигмоидный ход, который, по-видимому, 
отражает контур кривой ионизации групп, влияющей на Ет° (окисли-
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тельный эффект Бора) с рЯ в интервале 7,0—7,5. Из остроты относитель­
ного изменения Ет° от pH в границах, указанных на рис. 26, можно при­
близительно оценить, что число этих групп в Mb не больше одной, в от­
личие от Lb люпина и НЬСТТШ, где этих групп по крайней мере две. 
Значения сродства к электрону (AG=—nFEma) до и после ионизации этих 
групп и их разность для исследованных белков приведены ниже.

Белок

Lb люпина
НЬ СТТШ
Mb DD

AG
(pH 5,5), ккал/моль

-8,05
—4,22
—1,90

AG
(pH 8,5), ккал/моль

—4,90
—1,08
—0,81

SAG, 
ккал/моль

3,15
3,14
1,09

При рН>8,5 наблюдается сильное уменьшение Ет° (в согласии с (5)). 
Перекрывание этих двух процессов в области pH 8—9 затрудняет точное
определение эффективных рЯ. Резуль­
таты зависимости энтальпии О-В рав­
новесия Lb люпина (АЯ') от pH также 
указывают на влияние нескольких ти­
пов групп (рис. 3). Если принять, как 
в (5,8), вклад АЯ' ионизации лигандно 
связанной воды ~5 ккал/моль и вы­
честь контур мет/гидрокси-равновесия 
Lb с рЯ 8,7 (кривая справа — внизу 
мелкий пунктир) из кривой АЯ'= 
=/(рН), остается колоколообразная 
кривая, которую можно разделить на 
две составляющих (крупный пунктир), 

Рис. 3. Зависимость эффективной эн­
тальпии (AH') окислительно-восста­
новительной реакции леггемоглоби- 
на люпина (/) и энтальпии иониза­
ции лигандно связанной воды в 

мет-Lb (2) от pH (см. текст)

каждую с участием ионизации одного 
протона и наблюдаемого значения p7G= 
=7,0 и рЯц=8,9. Ионизация этих групп 
дает вклад

ДЯ/=—3,0 ккал/моль и 
АЯц'=4,0 ккал/моль.

Обсуждение зависимости Ет° от pH в литературе по гембелкам по од­
нозначно. В большинстве работ было использовано уравпеппе

nF [Н+]+ЯоЬз
из (*), где [Н+] — концентрация ионов водорода, a 7L>bs — наблюдаемая 
константа равновесия О—В связанной ионизации. С этой точки зрения 
изменение степени ионизации О-В связанной группы (а4) приводит к из­
менению значений дЕт°/дрН; рЯ4 идентифицируется «точкой перегиба» 
кривой Ят°=/(рН) (8,9). Возможно, однако, и другое объяснение: изме­
нение а, приводит к структурным изменениям, в результате которого Ет° 
меняет свое значение по контуру сигмоидной кривой аДрН) и мало за­
висит от pH до и после ионизации этой группы (,0); ее рЯ, соответствует 
pH, для которой дЯт°/ЗрН=0 (точка изменения знака производной) с до­
полнительным учетом влияния электростатики (“). Основное несоответ­
ствие двух интерпретаций заключается в оценке рЯ4 и, следовательно, 
в определении природы этой группы. Нам кажется, что вторая точка зре­
ния более правдоподобна ввиду следующих соображений: 1) Ет° линей­
но связана с фундаментальными термодинамическими функциями (на­
пример с AG), а не является производной от них; 2) в широком интерва­
ле pH кривая Ят°=/(рН) часто имеет сигмоидный контур (например в 
(5), рис. 7; в (4), рис. 2, и наши результаты); 3) значения рЯ,-, опреде­
ляемые из середины сигмоидной кривой, можно связать с группами, хо­
рошо известными из других, исследований, и не нужно постулировать 
«остаточный эффект Бора» (8) (см. ниже).
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Исходя из таких соображений, результаты, представленные на рис. 2, 
можно трактовать как pH-зависимые изменения Ет° для Lb, НЬСТТШ и 
MbDD от 272, 133 и 70 мв при кислых pH соответственно до 180, 40 и 
30 мв в щелочных pH. Вероятно, это значения Ет° до и после ионизации 
групп(ы) с рК в области 7,0, 7,5 и 7,2 соответственно. Для НЬСТТШ это 
значение немного ниже оценки рК группы ГИС G2 Бора (12). Для Mb DD 
значение 7,2 совпадает с рК его N-концевой а-аминогруппы, состояние 
которой влияет на структуру белка и тем самым на лигандное связыва­
ние. Можно думать, что изменение в структуре с ионизацией указанных 
групп приводит к изменению не только лигандного связывания, но также 
приводит к изменению значений Ет°, что справедливо и для Lb. Повы­
шенная острота кривых 1 и 2 в сравнении с кривой 3 (рис. 26) указывает 
на кооперативное влияние более чем одной группы i на Ет°; возможно, 
для ЛЯ' Hb СТТШ это и есть ГИС G2 и a-NH2, тогда как у Hb DD это 
только a-NH2-rpynnbi. Большое структурное подобие НЬ СТТШ и Lb лю­
пина (13, “) позволяет предположить, что их боровский механизм также 
аналогичен.

Влиянпе pH на вант-гоффовскую энтальпию О-В равновесия люпина 
(рис. 3) также указывает на участие в ионизации более чем одной 
группы.

На основании симбатности повышения Ет° с увеличением гидрофоб­
ности окружения гема (*’) можно утверждать, что Lb — представитель 
семейства Mb с наиболее гидрофобным окружением гема. Это согласуется 
с данными по первичной структуре (16) и с анализом других физико- 
химических свойств Lb (13). Полученные абсолютные значения сродства 
к электрону (Д(?=—пРЕт при pH 5,5) равны 8,05, 4,22 и 0,81 ккал/моль 
для Lb люпина, НЬ хирономуса и Mb дельфина соответственно. Они яв­
ляются количественной оценкой гидрофобности этих белков в свете ука­
занной корреляции.

Влияние специфических лигандов и ионной силы на Ет° Lb, а так­
же на сопряжение О—В реакции явится предметом наших будущих ис­
следований.
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