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УДК 539.374 МЕХАНИКА СПЛОШНОЙ СРЕДЫ

В. М. ФОМИН, В. П. ШАЛЕЕВ, академик Н. Н. ЯНЕНКО

-D-СВОЙСТВА СИСТЕМ ОДНОМЕРНЫХ УРАВНЕНИЙ ДИНАМИКИ 
НЕУПРУГОЙ СПЛОШНОЙ СРЕДЫ

В последнее время в ряде работ (1_4) предложено довольно-таки общее 
уравнение состояния динамических процессов в сплошной среде. Их ав­
торы пытаются определить вид уравнения состояния с точностью до кон­
стант, исходя из физических и математических предпосылок, а константы 
определить подбором при сравнении численных расчетов с экспериментом. 
В предлагаемой работе изучаются некоторые математические свойства 
системы уравнений одномерной неупругой сплошной среды, при этом по­
лучаются ограничения на вид уравнения состояния. Аналогично могут 
быть исследованы другие модели механики сплошной среды.

1. Введем ряд определений.
Определение 1. Система дифференциальных уравнений облада­

ет D-свойством, если система 5UD, полученная объединением си­
стемы S и системы дифференциальных связей D (*), совместна и находит­
ся в инволюции.

Вид дифференциальных связей можно априори не фиксировать, а на­
ходить из требования, чтобы решение системы обладало заданным произ­
волом. Это требование в ходе анализа на совместимость системы 
5UD дает условия на функции, определяющие вид дифференциальных 
связей. Обозначим символом Dy,’совокупность условий су­
ществования у данной системы S решения, зависящего от к°, произволь­
ных функций от If аргументов, {3=1, ..., р, и характеризуемого (5) сово­
купностью ia дифференциальных связей D порядка ja, а=1, 2, ..., т. 
Кратко назовем их ОП-условиями. В общем случае они являются систе­
мой уравнений в частных производных относительно функций, определяю­
щих вид дифференциальных связей D.

Определение 2. Система 5UD, удовлетворяющая ДП-условиям, 
называется Dn - системой.

Определение 3. Решения системы уравнений S, являющиеся ре­
шениями ОП-системы, называются СП-р ешениями.

Применим понятие D-свойства к системе уравнений динамики одно­
мерной сплошной среды в безразмерных переменных

щ=ох, ei=Px (1)
с уравнением состояния

Oi=A(o, e)ei+B(o, е)ех+Я(о, е)ох+С'(о, в), (2)
где о — напряжение, v — скорость перемещения материальной точки, е — 
деформация, t — время, х — лагранжева координата, а коэффициенты 
А (о, е), D(cf, е), С(о, е) и Я(о, е) — пока произвольные функции своих 
аргументов.

Предварительно потребуем, чтобы система (1), (2) имела три веществен­
ные характеристики, модули тангенсов углов наклона двух характеристик 
разных семейств в точке пересечения были равны и третье семейство ха­
рактеристик совпадало с траекториями частиц среды. Отсюда следует, что 
уравнение (2) должно иметь вид

о(=а(о, е)е(+с(о, е). (ЗУ
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К системе (1), (3) присоединим самую общую квазилинейную диф­
ференциальную связь первого порядка

Л (о, е)ох+Д(о, e.)e,t+F (о, е)ех+(7(о, е)=0 (4)

и выпишем Д/ПЛусловия для системы (1), (3), (4). В результате ана­
лиза на совместность устанавливаем, что в общем случае вместо (4) до­
статочно рассматривать связь

ox=E(g, е)е(+2г’(о, е)ех+Д(о, е); (5)

при этом имеют место два случая Д/ПАсистем с решениями
a) F^O, а=Е2, с=±Сз(Г+с4с3Т+с1СзТе),л,

E=Csl, G=±l''’+c/c3-l, l—CiO+ci', (6а)

б) £=0, а=Е, G=CiC(.G,&), F=c (J -^-cZo+/(e)j . (66)

Здесь ct, c2, c3, Ct — произвольные константы, /(e), c(o, e) — произволь­
ные функции соответственного одного и двух аргументов.

Теорема1. Для того чтобы система уравнений (1), (3) имела 
Б^ПД-решения, характеризуемые дифференциальной связью (5), необ­
ходимо и достаточно, чтобы коэффициенты уравнения состояния опреде­
лялись либо соотношениями (6а) с произволом в четыре константы, либо 
соотношениями (66) с произволом в одну функцию одного аргумента и 
одну функцию двух аргументов.

К переопределенной системе (1), (3), (5) присоединим вторую самую 
общую квазилинейную дифференциальную связь первого порядка и вы­
пишем Д^П^-условия для полученной системы. Анализ на совместность 
показывает, что в качестве второй дифференциальной связи в общем слу­
чае достаточно взять связь

e(=r(o, e)ex+s(o, е), (7)
при этом Д^ПЛусловия можно привести к системе Коши — Ковалевской 
первого порядка относительно четырех функций

sc= (hha—csa—rhsa^/s, he= (hca—cha+FhsF) / s,
rc= (r2h<!+hrr<!—2r>Sa) /s+ (hca—cha—2rhha+2Tcsa+r2hs^/sz,

(8) 
ce=—rzca+3r3ha—3rlsa+3(rhc<,—crha—Fhha+cFs^/s, 

h=sD+G, a=r2, c=c—as, F=F—Dr.

Теорема 2. Для того чтобы система уравнений (1), (3) имела Д^П?- 
решения, характеризуемые дифференциальными связями (5) и (7), не­
обходимо и достаточно выполнения условий (8), при этом произвол в 
определении коэффициентов уравнения состояния равен четырем функ­
циям одного аргумента.

В результате рассмотрения всех возможных случаев ДП-решений си­
стемы (1), (3) с функциональным произволом получены следующие ре­
зультаты:

Решения о^п* п®п®
Условия (6) Не в инволюции Несовместны (8) Несовместны

Здесь можно также выписать такие ДП-условия, которые одновремен­
но являются как Д/ПЛусловиями, так и Д^П^-условиями. При этом в 
более содержательном случае Д/П/ б) ПД^П^-условий их можно свести 
к системе трех уравнений типа Коши — Ковалевской.

Если уравнение (3) и связь (5) линейны, то для существования 
д/пг -решений уравнение (3) должно быть вида

<5t=azt+ki<5—akie+k2, 
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кц k2, a — произвольные константы. Имеют место три различных под­
случая:

1) сг^О, к2^0; 2) а=0, ki^O; 3) 7ci=0, а^О, каждый со своей диффе­
ренциальной связью. Для них легко выписать -О^П^-решения, а также об­
щее решение системы (1), (3). В первом случае 
решение системы (1), (3) задается формулами

о=ф4-ф+А12ые_*‘‘,
у= (гр—ф)/а,/1+&1®/ем,

8=(ф+'ф)/а+®1Х"е'‘,(+Л2/ (a/ci);

во втором случае

a=aehit—k2/kl, v=ax'ehlt/kl+f(x), 
E—<Hxx"eh'‘/kl2+fx't+g(x') •

в третьем случае
Рис. 1. 1 — эксперименталь­
ная зависимость cr=cr(i, 0); 
2, 3 — расчет по нашей мо­
дели (2) и модели Соколов­

ского — Мальверна (3)

а=ф4-ф, v=(ty—q>')/d',—k2x/a,

е= (if+<p) /a—tsy/a—kitla.

Здесь ^=t+x/a‘/1, r\=t~x/a''1, а функции f, g, ф=ф(ц), ip=ip(§) и ®=®(z) 
произвольные.

2. Уравнение (3) и связь (5) представляют из себя замкнутую систему. 
Если известно ее решение, то v находится как решение вполне интегрируе­
мой системы. Когда Е, F, G не зависят от о, то лучше сначала выделить из 
системы (1), (3), (5) уравнения

ух=е(, pi=£’(8)8i+E(e)8x+G(8) (9)

и исследование вести относительно переменных v и е. При этом в случае 
б) ТЭ/ПЛсистемы коэффициент а в уравнении (3) определяется как 
а=/'’=ф'(е), где о=ф(е) — статическая зависимость (о--е), а неоднород­
ный член —как функция аргумента (о—$F de). Если G=0, то систему (9) 
полезно линеаризовать преобразованием годографа. Дополнительно пред­
положим, что (3) распространяется и на статику, т. е. из ег=щ=0 следует 
с (0) =0, и рассмотрим две связанные между собой задачи о динамическом 
деформировании стержня длины I и диаметра d, l>d, один конец которого 
жестко закреплен.

Задача 1. Найти функции v и еес2, удовлетворяющие системе (9) 
в области i>0, a:e[0, Z] начальным е(0, ж) =е0, н(0, х) =v0, .re[0, I] и гра­
ничным условиям v(t, 0) =0, v(t, I) =и0, Z>0.

Задача 2. Найти функцию с (а—ф(е)), если известны a(t, O)=Fi(t) 
и решение задачи 1.

Используя результаты работы (8), устанавливаем, что решение зада­
чи 1 существует и единственно, если Е(е)ес1. Взяв известную после ре­
шения задачи 1 функцию х(о—ф) ='ф~1, обратную к функции г{>(£) = 
=Ft(t)— ф(е(£, 0)), решение задачи 2 определяем формулой c=Fl'—ф'- 
•е/(х, 0).

С целью получения простого аналитического решения в качестве кон­
кретного примера было взято уравнение состояния

4(J+P)-8|+е; [с,‘- Н^ТгатД+р)-) ]‘

и проведено сравнение теоретических расчетов с экспериментальными 
данными, изложенными в работе (’). Результаты приведены на рис. 1, 
где 8=(о—а0)/й; Оо=10кг/см2, о,=8 кг/см2, i= (£—t0)/t<>, Z0=3,4-10-3 сек. 

1069



Константы О!=0,69; а=0,34; £=0,71 выбирались из условия аппроксима­
ции статической зависимости (о—е), а константы с1=0,38; с2=1,42 из 
требования близости экспериментальной и теоретической кривых 8= 
=6 (i, 0). Величины о0, to, а также все другие необходимые исходные дан­
ные взяты из (’).
Вычислительный центр Поступило
Сибирского отделения Академии наук СССР 26 VI 1973
Новосибирск
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