
Доклады Академии наук СССР
1974. Том 215, № 5

УДК 51 :155.001.57+577.4.08 ЭКОЛОГИЯ

А. П. ШАПИРО

ОБ ОДНОЙ МОДЕЛИ КОНКУРИРУЮЩИХ видов

(Представлено академиком А. А. Вороновым 2 XI1973)

Постановка задачи управления экологической системой предполагает 
формализацию основных процессов, происходящих в системе. В настоящей 
работе рассматривается модель конкуренции нескольких видов.

Состояние экологической системы в некоторый момент можно прибли­
женно описать n-мерным вектором X, компонентами которого Х(М (X(ft)>0) 
являются численности видов, входящих в систему, численности возрастных 
групп или другие характерные величины. Мы изучим значения X; векто­
ра X через равные промежутки времени, характерные для данной экосисте­
мы (например, через год или через поколение). Переход от состояния Х{ в 
состояние Xi+1 описывается оператором эволюции F, зависящим от много­
мерного параметра

Xi+1=F(0)X,. (1)
Компонентами р являются параметры системы, которые в первом при­

ближении можно считать постоянными. Последовательность {Х<}(=0", 
удовлетворяющая рекуррентному соотношению (1), называется траекто­
рией системы, Хо — начальным состоянием.

Траекторию {XJ будем называть невырожденной, при начальном со­
стоянии Хо и параметре £, если все компоненты векторов X, равномерно 
ограничены снизу положительным числом, т. е. inf {Х<;)}>0, 4=1, 2, ..., п, 

i
и вырожденной в противном случае.

Траекторию {XJ будем называть параметрически невырожденной при 
Р=^о, если она не вырождается при изменении р в некоторой т-мерной 
окрестности и X в n-мерной окрестности Хо. Аналогично определяется 
параметрическая вырожденность.

1. Пусть п видов, численности которых Xtw, конкурируют за m ресур­
сов. Считаем, что s-й ресурс восстанавливается до постоянного уровня Q, 
после каждого шага системы (s=l, 2, ..., тп). Обозначим rha потребность 
особей 4-го вида в s-м ресурсе. Напряженность конкурентных отношений, 
соответствующую s-му ресурсу, на i-м шаге назовем, следуя (1),

1 "х,,. = —^ХГ. (2)
VS 4=1

Пусть выживаемость 4-го вида X,+i /Х(Г экспоненциально зависит от 
х, т. е.

m
X%\=AhX™ exp ( - У ^sxsi) , (3)

s = i

где Ak — постоянные коэффициенты, включающие плодовитость, соотно­
шение полов в стаде и т. п., характеризуют чувствительность осо­
бей 4-го вида к недостатку s-ro ресурса.
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Выбор экспоненциальной связи между выживаемостью и напряжен­
ностью вызван поведением системы в крайних случаях при больших и 
малых х. Априори можно было бы под знаком экспоненты поставить лю­
бую строго убывающую функцию xsj (линейная форма взята как первое 
приближение). Формулы (2), (3) определяют оператор эволюции рассмат­
риваемой экосистемы. Построенная модель является далеким обобщением 
модели Риккера (2).

2. Обозначим В (тХ,п)-И1&трятз,у {f^}, R— (тХп)-матрицу {^- гм}. 
Подставляя (2) в (3), получим

п

X‘:)1=AX1wexp(-^|IwX'P)), Л=1,2, ...,ге. (4)

p=i

При этом матрица C={"fa?}=7?JRr (ЛТ — транспонированная 7?).
Теорема 1. Если в описанной модели число ресурсов меньше числа 

видов, то все траектории системы параметрически вырождены почти для 
всех значений (п2+п)-мерного параметра ({у^}, Ль).

Доказательство основано на том, что в этом случае ранг матри­
цы С меньше п. Теорема 1 означает, что системы, состоящие из большого 
числа видов конкурентов, вырождаются.

Рассмотрим случай пг>п. Если определитель А матрицы С равен нулю, 
то система параметрически вырождена. В противном случае существенную 
роль играют свойства решения А={Х(р)} линейной системы уравнений

п

£^hPX^=lnAh, (5)

_ р—1
X — неподвижная точка оператора F.

Теорема 2. Если ДАО и хотя бы одна из компонент решения систе­
мы (5) Х(р) отрицательна или равна нулю, то все траектории системы па­
раметрически вырождены.

Заметим, что, если Х(р)^0, к нулю стремится не обязательно p-я ком­
понента вектора Xt, описывающего состояние экосистемы.

Поведение траектории в среднем описывается следующей теоремой.
Теорема 3. Если траектория системы параметрически не вырождена, 

то существует предел средних арифметических векторов Х( и этот предел 
равен X, т. е.

, N

lim — V1 Х<=Х. (6)
W-»oo N

i = i

3. Циклом длины I называется такая траектория {X}i=o системы, что 
Xi=X0 для некоторого I.

Из теоремы 3 следует, что неподвижная точка X является центром тя­
жести элементов цикла.

Для случая двух видов изложенные результаты могут быть усилены.
Теорема 4. Пусть т—2, неподвижная точка X лежит в первом квад­

ранте. Если Д>0, то траектории не вырождены при любых начальных 
состояниях. Если Д<0, то существуют области Qt и Q2 такие, что траекто­
рии, попадающие в область Qt (в область (?2), сходятся к точке (0,— 1пЛ2) 
(к точке(-—In Ai, 0)). При Д=0 одна из компонент вектора X стремится к 
нулю.

Представляет интерес исследование условий образования циклов. При 
машинной реализации модели (в случае п=2) наблюдались циклы длины 2, 
6, 11 и некоторые другие. Не выяснено, может ли одна траектория запол­
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нять всюду плотно некоторую двухмерную область. Построенную модель 
можно рассматривать как первое приближение микроэволюции биосисте­
мы, состоящей из конкурирующих видов. Введенная в работе формализа­
ция процесса конкуренции позволяет ставить задачи оптимального управ­
ления экологической системой. Например, если задана цена единицы 
каждого ресурса, то можно поставить задачу минимизации суммарных 
затрат при фиксированном среднем объеме общей биомассы системы. 
Указанная задача возникает при оптимизации управления прудовым хо­
зяйством, если используется искусственная подкормка популяций рыб.
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