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(Представлено академиком М. А. Леонтовичем 23 VIII 1973)

В настоящее время отсутствует общий метод численного решения диф­
ракционных задач для произвольных периодических структур. В предла­
гаемой статье заполнен этот пробел: предложен метод, основанный на ис­
пользовании функции Грина для уравнения Лапласа и автоматически учи­
тывающий особенности поля в угловых точках (если таковые имеются). 
Метод эффективен для систем с периодом, не превосходящим нескольких 
длин волн в свободном пространстве, т. е. в длинноволновой и промежуточ­
ной областях. Для иллюстрации возьмем задачу о дифракции плоской вол­
ны на произвольной двухмерной периодической поверхности (см. рис. 1).

Обозначим: © — частота, А — длина волны в свободном пространстве, 
к—м/с — волновое число и d — период системы. Область D, ограниченную 
одним периодом системы снизу и отрезком pd^x^d+pd, р=0, ±1,..., оси 
Ох сверху, будем называть резонатором, границу резонатора обозначим 3D. 
Всю область над периодической системой назовем Q, а ее границу Г.

Падающую волну зададим в виде

uw=Ae^x+ay, fj=/ccosq), a=iAsincp.

Поле и определяется волновым уравнением

Au+A2u=0 (1)
и граничными условиями, в качестве которых примем условия Неймана

5и/(Эп|г=0, (!')
условие предельного поглощения и условие квазипериодичности (Флоке)

u(x+d, y)=eifiu(x, у). (1")

В соответствии с (1) и (1") можно и представить при р>0 в виде
00

и=и(0>+ JVne<p"*-g-1', рп=ф+_£^, an=(p„2-/c2)V1, (2)
п= —00

причем Im a„<0, а если Im a„=0, то берем а„>0.
В области £>(р=0) представим и в виде разложения по полной системе 

ортонормированных собственных функций н,„ (ж, у) задачи Неймана
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во С)
дит
дп (3)

Запишем уравнение (1) в форме

оо

п=— 00

при у^О,

\и=—кг
му1, Л mum(x, у)

771 = 0

(4)

при у^О, (ж,у)ео

и аппроксимируем бесконечные ряды в правой части (4) их конечными от­
резками, положив

п<0) + при у>0,

(5)
м

£ Л т^т (х, У ) при у<0, (x,y)eZ).
т=0

Можно показать, что уравнение (5) при краевых условиях (1'), (1") 
и предельного поглощения имеет единственное решение, непрерывное с 
первыми производными всюду, кроме, может быть, угловых точек (реше­
ние понимается как обобщенное (2), или как классическое всюду, кроме (N) точек 0<ж<б, у=0, где производится сшивание). Это решение назовем Um ■ 
Несложно показать, что для обеспечения сходимости Um '' к и при М, 
достаточно наложить на Um' условие, чтобы при у>0 его коэффициенты 
Фурье по системе функций {e!SnX} при —N^n^N совпадали с Спе~апУ, а при 
у^О — коэффициенты Фурье по системе {ит(х, у)} при совпа­
дали с Ат. Это условие назовем условием совпадения коэффициентов.

Перейдем к непосредственному вычислению U^- Построим функцию 
Грина G уравнения Лапласа, удовлетворяющую условиям

AG=8(x—x', у—у'), 0<x<d, 0<x'<d,

G(x+d, у, х', y')=~e^dG(x, у, х', у'),

G (х, оо, х', у') =0, dGIdn | г=0.

Как легко убедиться, G может быть представлена в виде

G= - У , ■■ (е-1^Нп-пЧ+е-Щд11г,+пЧ)> (6)
77= —оо

где g+iT]=5(z) — функция, отображающая конформно область Q плоскости 
z=x+iy на полуплоскость ц>0 плоскости £ так, что£(0)=0, £(d)=d, 
^(о°)=°о. в силу теоремы Римана такое отображение существует для лю­
бой непрерывной Г (3).
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Теперь можно записать как
N d оо

и^=-к2 | J J e^-^'Gdx’ dy'+
n=-N О О

+ fjum(x',y')Gdx'dy'+Af j e<te'+““'G dx' dy'}=
m=o D 00

N M= У, Cnfn (x, y) + Amgm (x, y) + Afw (x, y). (7)
n=—N m—0

Условие совпадения коэффициентов приводит к системе линейных ал­
гебраических уравнений для Спи Ат:

i “ л N d
A — jf(0> (x, у) е~‘^х dx + — У, Cn J /п (ж, y) e_ifi₽x dx +

0 п=—У 0

I M d
+ — У, Am J gm (x, y) e~^ dx=Cpe-a^+bopAeav, Ip I <2V, 

m—0 0

NM' n(x,y)u}(x,y)dx dy+A Jj fw(x,y')uj(x,y)dxdy+
n=—N D D

(8,)

M
+ ^gm(x,y)u,(x,y)dxdy=A1, (82)

m=0 D

Преобразуем подсистему (80 так, чтобы исключить зависимость от у.
d со

Применив к /п= И GAX'y(e^nX'~a"v')dx' dy' формулу Грина и учтя гранич-
О о

ные условия, получим

е^пХ' dx'=eiS'nX~a'ny+fn (х, у), 
v'=o

где fn — гармоническая при y=AQ функция, удовлетворяющая условиям 
Флоке (l/z); fn(x, °°)—0. Следовательно, при у>0 она может быть пред­
ставлена в виде

оо

7п (х, у) = У, fnseili‘x-^'y, (9)

где fns — постоянные коэффициенты. 
Аналогично получается

оо

giS,x-IPsDl

8= — оо

у>0, (10)

оо

gm(x,y) = y'igmseil’’x-'^y, у>0. (И)
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(12)

Подставляя (9) —(И) в (80, можем переписать (8t) в форме

N М
Л/Г+Г СХР + £л^=0. \p\^N,

n=—N т=0

откуда видно, что искомые величины Сп и Ат на самом деле от у не за­
висят.

Можно показать, что система (81), (82) допускает предельный переход 
Л7->°о, получающаяся при этом бесконечная система, будучи пере­
писана в стандартном виде, удовлетворяет условиям Коха (4). Определив 
из (8J, (82) коэффициенты С„ и Ат, находим UaP по формуле (7).

Изложенный метод является численным и должен применяться в соче­
тании с ЭВМ. Однако при (d/A,)2<l в ряде случаев можно получить явные 
выражения. Например, в случае гребенки с бесконечно тонкими зубцами 
длины h при e_2"h/‘!<cl коэффициент отражения Ra=C<>IA получается рав­
ным

а+Ъ+Т [ (а-Ъ) 22Ь-*+ (а+&) 2"26-1 ] 
й° ~ а—Ь+Т[ (а+Ь)22Ь-1+(а-Ь)2-2д-1] ’

где а=ай/(2л), & = ^/(2л), Т= 6-22Ь[1/^+ ф(Ь)+ф(1-Ь)+2С+2 1п2], 
kd , ч Г'(Ь)

В = ——tgZc/i, ф(6) = -7-7, ; С=0,5771... — постоянная Эйлера.
2л 1(о)

При ф=л/2 (?=0) имеем R0=e2ihh, как и следовало ожидать, а при 
<р=1/, где % удовлетворяет уравнению

а—&
(а+6)22Ь-‘+(а-&)2-26-1

+Г(Ь) = О,
kd

b = -—chx, (13)

получаем Ro=°°.
Условие (13) есть характеристическое уравнение для поверхностной 

волны, в нужном приближении согласующееся с уравнением, следующим 
из метода факторизации (5).
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