
Доклады Академии наук СССР
1974. Том 216, № 5

УДК 517.9+551.465 ГИДРОМЕХАНИКА

А. В. КАЖИХОВ

РАЗРЕШИМОСТЬ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ 
ДЛЯ УРАВНЕНИЙ ДВИЖЕНИЯ НЕОДНОРОДНОЙ ВЯЗКОЙ 

НЕСЖИМАЕМОЙ ЖИДКОСТИ

(Представлено академиком Г. И. Марчуком 12 XII 1973)

Движение неоднородной вязкой несжимаемой жидкости описывается 
системой уравнений Навье — Стокса (*)

p[vt+(v- V)v]=|iAv—Vp—2p[e>Xv]+pf, div v=0, 
p(+(v-V)p=0, ’ (1)

где искомые функции n(x, f) = (Vi, v2, v3), Vp(x, t) и p(a:, t) суть скорость, 
градиент давления и плотность жидкости соответственно, p=const>0 — 
коэффициент динамической вязкости, со (х, £) — вектор угловой скорости 
вращения системы координат, ie[0, Т}—время, х=(х^ х2, х3)—точка 
области течения Q с дважды непрерывно дифференцируемой границей дй.

В работе исследуется разрешимость следующей начально-краевой за­
дачи для системы (1):

v|i=0=a(x), р|(=0=р0(ж), v|ST=0, 5r=5QX[0,71]. (2)

В случае р (ат, t) ^ps (х) = const эта задача достаточно полно изучена 
О. А. Ладыженской (2). В данной заметке некоторые из результатов (2) 
обобщаются на случай неоднородной жидкости.

Определение 1. Слабым решением задачи (1), (2) называ­
ются функции у (a:, t) и р(а:, J), удовлетворяющие условиям:

a) v(ar, ^е'Е2(С)г)Г17((2т), (?r=QX[0, 71] (определение пространств 
V2(Qt) и 7«2т) см. в (2,3));

b) функция р(ат, 0 ограниченная и положительная для почти всех 
(ж,

c) для всех гладких в QT функций Ф (ат, i) и <р (х, t) таких, что 
div®=0, 0|st=®Gt, Т) =0 и <p(x, Т)=0, выполняются интегральные 
тождества

J J {р[ (v, Ф(+(у • V)Ф) + (f-2[®Xv], Ф)]- n(Vxk, ®Xft)}da:d£ +

+ J po (а, Ф (x, 0)) dx = 0, (3)
Q

+ (v ■ V)<p]da: dt + f po(a:)<p(a:, 0)dx—0. (4)
0 Q Q

Теорема 1. Если f(a-, i)<=L21(<2T), ю(ат, t)<=Lqгде l/r+ 
+3/(2<?)1, re[l, °°), ?s(3/2, °°], a(a?)e/(Q) и 0<m^p0(a:)CAf<<», то су­
ществует no крайней мере одно слабое решение задачи (1), (2).

Доказательство теоремы 1 проводится методом Галеркина. Пос­
ледовательность приближений vn (ат, i) и р"(а:, £) находится следующим 
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образом. \n(x,t) строится в виде конечной суммы: vn(x, t) = ^ 
j=i 

где {а-'(ж)} — базис в (Q), а р”(ж, 7) определяется как решение задачи

pin+(vn- v)pn=o, pn|i=o=po"U); (5)

здесь {pon (х)} — последовательность гладких функций, сходящаяся к 
Po(z) при п-+°° в нормах пространств Lg(Q), Для вычисления
коэффициентов с„;(7), 7=1, 2,..., п, требуем, чтобы vn(x, t) и p"(z, i) 
удовлетворяли тождеству (3) при всех функциях Ф(ж, f) вида Я(7)аДж), 
/=1, 2,..., п, где H(t) —произвольная гладкая на [О, Г] функция, рав­
ная нулю при t=T. Это требование приводит к задаче Коши для системы 
обыкновенных дифференциальных уравнении относительно Cnj (*):

П 7 п п
У, аг" + У, f>HjCnicni + У 'Yi "с„г= fjn, (6)
Z=1 i,l=l 1=1

Cnjffi") См 7 2,...,
здесь

ач"(7) = jp”(a!,a’)dx, £<“(£)= ]*рп((аг • V)a',aJ)dx,
Q Q

fl"(i) = J [И(<» a4) + 2pn([<вХаг], a1) ]dx, fjn(t) = J pn(f, aj)dx. 
Q Q

Начальные значения cnj(0) взяты равными соответствующим коэффи­
циентам разложения начальной функции а (ж) по базису {а’(ж)}:

Cj = J (a, a’) dx.
а

Далее для галеркинских приближений уп(х, t) и рп(х, t) выводятся 
априорные оценки

max ||vn||2,a+||vxn||2,4r^Ci, 0<m^pn(x, (7)

с помощью которых на основе принципа неподвижной точки Шаудера до­
казывается разрешимость задачи (5), (6).

Константы Ct, т и М в (7) не зависят от номера п, поэтому можно 
выделить подпоследовательности {vn*} и {р71*}, «-слабо сходящиеся в 
V2(Qt) RJ(Qt) и в L„(Qt) соответственно.

Помимо оценок (7), устанавливаются следующие свойства приближе­
ний V" (х, t) и pn (ж, t). Во-первых, vn (х, t) равностепенно непрерывны по t 
в норме Л2(<?т), а именно: имеет место оценка

J ^\vn(x,t+At) — vn(x,t')\2dxdt^C2(.&ty'a (8)
О Q

для любого числа А7, 0<А7<7’, с постоянной С2>0, не зависящей от п. 
Во-вторых, «-слабый предел р(ж, 7) функций р71*^, 7) сильно непрерывен 
по t в ig(Q), Kg< °°, и для всех 7е [О, Т] удовлетворяет равенству

||р(ж, t) ||g, а=||ро(^) Ik О, 1=С?<<». (9)
Из (7), (8) и (9) вытекает компактность {vn,i(x, 7)} в L2(QT) и 

{рпк(х, 7)} bL4(Qt), l^q< оо.
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Предельным переходом при °° в интегральных тождествах, которым 
удовлетворяют Vя* и р"*, показывается, что предельные функции v(z. 7) 
и р(х, t) являются слабым решением задачи (1), (2).

Определение 2. Решением задачи (1), (2) называются функции 
у(ж, t), Vр(х, t) и p(z, t), удовлетворяющие следующим условиям:

(I)v(x,Й7,2'1 (Г)т) П/(2Т), VpEL2(2r), 0<m^p(x,t)^M<°°,

(II) эти функции удовлетворяют первым двум уравнениям системы
(1) в сильном смысле, а третьему—в смысле интегрального тождества (4).

Рассмотрим сначала случай плоскопараллельного течения жидкости, 
когда v= (щ, щ, 0), х= (xt, х2). Справедлива

Теорема 2. Если i(x, t)^L2(QT), (ф,1)=1,12((7), q>2, а(х)е 
<=W2'(£i) flJ(Q) и 0<m<po(z)s£4/<o°, то существует решение задачи (1),
(2) в смысле определения 2.

Доказательство теоремы 2 основывается на равномерной по п 
априорной оценке для галеркинских приближений vn(x, J):

max llvxn|2, а+ llvinll2. Qj+Hvxx"^, qt^C3, (10)
0<f<T

которая выводится путем умножения уравнений (6) на dcnj/dt, суммиро­
вания по / от 1 до п и дальнейшего применения неравенства Гёльдера и 
оценок решения стационарной задачи для уравнений Навье — Стокса (2).

В общем случае трехмерной задачи близкими рассуждениями получен 
такой результат о разрешимости «в малом».

Теорема 3. Пусть данные задачи удовлетворяют условиям:

f(x, 1)еЛ2(Ст), ®(я, £)б=£з.2«М, а(^)еИ'7(О)Г|/(О),
0<т^р0(а:) ^М<°°

и выполнено одно из неравенств

Г 
ц L

ГО2(Й)
ц 2,<? >0, (12)

где Ki (Q) и К2(£1) — постоянные, зависящие лишь от области Q.
Тогда существует решение задачи (1), (2) в смысле определения 2.
Замечание 1. Предположение относительно гладкости границы dQ 

при доказательстве теоремы 1 можно ослабить, потребовав лишь кусоч­
ную непрерывную дифференцируемость 3Q.

Замечание 2. При доказательстве теорем 2 и 3 в качестве базиса 
в пространстве J (Q) берется базис из собственных функций оператора ли­
нейной стационарной задачи для уравнений Навье — Стокса (см. (2)).

В заключение пользуюсь случаем выразить искреннюю благодарность 
акад. Г. И. Марчуку и В. Н. Монахову за полезное обсуждение данной 
работы.
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Новосибирск
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