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1. Пусть М — связное компактное n-мерное риманово многообразие 
класса С3, Т — диффеоморфизм М класса С2, удовлетворяющий аксиоме А 
(см. (*)),  У — поток класса С2, также удовлетворяющий аксиоме А и L — 
невырожденный эллиптический дифференциальный оператор на М с глад­
кими коэффициентами. Оператор L порождает на М диффузионный про­
цесс, переходную плотность которого обозначим через q(t, х, у). Рассмот­
рим на 7Йцепь Маркова хпе с переходной плотностью рс(х, y'i^q^2, Тх, у). 
При каждом е>0 ре(х, у)>0, поэтому (см. (2)) существует единственная 
нормированная инвариантная мера о® процесса хпе. Мы изучаем множество

предельных точек в смысле слабой сходимости мер {о®} при е-*0.
Рассмотрим теперь дифференциальный оператор

Л/=е2£+5, (1)

где В — векторное поле потока S‘, т.е. В(х) =d(Stx')/dt\t=o. Оператор L/ 
порождает диффузионный процесс у° с переходной плотностью 
rc(t, х, у)>0. Так же как и выше, существует единственная нормирован­
ная инвариантная мера Vе процесса г/(®. В этом случае мы также изучаем 
множество 2V предельных точек мер v® при е-*0.  С точки зрения теории 
дифференциальных уравнений изучается задача, связанная с уравнением, 
имеющим малый параметр при старших производных.

Проблема исследования сходимости при е->-0 инвариантных мер малых 
случайных возмущений динамических систем была поставлена А. Н. Кол­
могоровым. В рассматриваемый нами класс динамических систем входят как 
полярные случаи системы Морса —Смейла (‘), для которых наши резуль­
таты не дают ничего нового по сравнению с (5) и (в), и У-системы (3), для 
которых теоремы 1 и 2 дают полное решение проблемы, тогда как методы 
(5) и (8) в этом случае неприменимы.

2. Пусть Q — множество неблуждающих точек для Т (*)  и AcQ — ат­
трактор (см. (*))  такой, что любой аттрактор, содержащийся в Q, содер­
жится и в А. Нетрудно понять, что любое базисное множество (см. (*))  
либо содержится в А, либо не пересекается с А. Обозначим через 
[3=1,..., Na, связные компоненты QacA. Пусть нормированная мера у с 
носителем в достаточно малой окрестности множества имеет непрерыв­
ную плотность относительно риманова объема. Положим ул(Г) =у (Г~АлаГ). 
В работе (4) показано, что имеет слабый предел цар при Положим

Теорема 1. Если oe2Jl0, то:
а) о(А)=1,
б) о|о =o(Qa)p.<x (т.е. ограничение о на Йа пропорционально ца).
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Нахождение величин o(Qa) для разных а связано с методами работ 
(5,6). В «типичных» случаях существует единственное а такое, что 
о (Qa) =1 и о (Qp) =0, если ^#=а.

В случае, когда Т — транзитивный У-диффеоморфизм (3), 
поэтому o(Qa)=l и, следовательно, 2Л0 состоит из единственной меры, ко­
торую в соответствии с (3) обозначим ц<р). Если Т имеет гладкую инвари­
антную меру ц, то ц(р)=ц.

В случае, когда S*  — поток, удовлетворяющий аксиоме А, можно дока­
зать теорему, аналогичную теореме 1, если существует мера р</ со свой­
ствами, аналогичными свойствам меры ца, построенной для диффеомор­
физма *.  Если — транзитивный У-поток, то такая мера существует. Она 
построена в (3) и определяется следующим свойством: если у — мера на М, 
имеющая непрерывную плотность по риманову объему и (Г) =у (5_‘Г) , 
то при t-+°° слабо сходится к ц(р).

* Недавно Боуэн и Рюэль построили меру с необходимыми свойствами.

Теорема 2. В случае транзитивного У-потока Vе слабо сходится к ц(р).
Возможность другого подхода к теореме 2, основанного на общей теории 

гиббсовских мер, была указана в (3). Как сообщил мне автор работы (3), 
его доказательство теоремы 9 из (3) относилось только к геодезическим по­
токам на двумерных поверхностях отрицательной кривизны. Кроме того, 
в § 5 из (3) вместо меры р/с> должна фигурировать мера ц<р).

3. Пусть Ф' — поток реперов (см. (7)) на компактном многообразии от­
рицательной кривизны W. Динамическая система Ф' сохраняет естествен­
ную гладкую меру ц, порожденную римановой метрикой. Предположим, 
что фазовым пространством потока Ф! является многообразие М. Построе­
ние малого случайного возмущения потока S‘ дословно переносится на слу­
чай Ф‘, только векторное поле В следует заменить на S(x)=d((^‘x)/dt\t=l), 
Обозначим инвариантную меру полученного диффузионного процесса че­
рез rf.

Теорема 3. Предположим, что поток Ф1 эргодичный; тогда
т]‘—

слабо

Как показано в (7), достаточным условием эргодичности потока Ф' яв­
ляется малое отличие метрики многообразия ТУ от метрики постоянной от­
рицательной кривизны. Отметим, что У-системы и потоки реперов на много­
образиях отрицательной кривизны составляют класс известных в настоя­
щее время примеров гладких ^-систем.

4. В оставшейся части заметки мы наметим доказательство теоремы 1. 
Теоремы 2 и 3 устанавливаются близкими методами.

Пункт а) теоремы 1 доказать легко, поэтому мы остановимся на б). Если 
то через ТГ“(х) (lT7i(z)) будем обозначать неустойчивое (устойчивое) 

многообразие точки х (см. (*)).  W!iu(x) (W6s(x)) —шар с центром в х 
радиуса б в метрике на Wu(x) (Ws(x)). Введем re(e) = [e_“‘J, «i>0, и 
б(е)=Е1~а,> 1>а2>0, где [•] означает целую часть, причем 2a2>cci. Для 
любого множества A<=Q положим TFSS(A) = U W^x). Можно показать, что 

хе А

основную роль играет изучение точек из множества ТУад (Q). Пусть 7>0 

достаточно велико, но фиксировано, 'у(е)=у-б(б),Д7(е)(а;)=Т7т'е)(ТУ1,“е)(2:)).
Лемма 1. Пусть {х/(о))}, &=1,..., п(е), — траектория процесса хпе, 

причем xl=xl‘(a))^W (Qa), йа<=А.
Тогда либо существует zeQa такое, что Xhe(,a')^DyM(Tkz') при к= 

=1,... ,га(е), либо найдется такое к, что l«S/c<A:-l-l<n(e) и

р(7’%'(ш),я:Д1(со))^б(8), (2)
где р (х, у) — риманово расстояние от х до у.
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Из этой леммы следует, что в выражении для рс(га(е), х, у) — переход­
ной плотности за м(е) шагов, в формуле Колмогорова — Чэпмена следует 
интегрировать по у (е)-окрестностям траекторий динамической системы, 
так как траектории процесса х„е, для которых существует к такое, что 
справедливо (2), имеют малую меру. Далее можно показать, что в у(е)- 
окрестности точки х можно заменить Т на дифференциал Т в точке х и 
оператор L можно считать оператором с постоянными коэффициентами в 
7 (е)-окрестности точки х.

Положим
7?(z,x,y) =

ре {x,Wi)... ре (гр„(е)-1, у) m (dWi) ...m (dwnw-i)t
£)V(S)(61) cV(8)($n(e)-i)

где gi=7’_’1(s)+iz и m(dw) — элемент риманова объема на М. В силу сде­
ланных выше замечаний 7?(z, х, у) можно оценить через некоторую 
гауссовскую плотность. Точные оценки приводятся ниже в лемме 2.

Пусть х^А и m, mi суть меры, индуцированные римановым объемом 
на Wu(x) и Wu(Tx). Положим

ч d(Tfn) 
к(Тх) = -- -(Тх).

arrh
Обозначим

Mh л (х)={у- y^W‘ht (z (y)),z (у) (х)},
п(е)-1

ЛД.г(х)=ЛД,о(х) = 0, <?n(e)(z) = JJx-‘(T‘z).
Л=0

Пусть х, y^Wl(t) (Qa) И х, y^Qa, причем хеИД'.Дх), УеИД(е)(у).
Лемма 2. Если y^Mh, i(.x)\{Mh-i, Дх) иТД,!_! (х)) и /се<7(е), Ze< 

<у(е), то

С~'г~п exp [ -a-1 (fc2+Z2) ] < < Се~п exp[-a(/c2+Z2) ]

для некоторых с>0, а>0.
Эта лемма играет ключевую роль в доказательстве. Из нее уже мож­

но вывести, что если о(£2а)¥=0 и оеШ10, то o|Qa эквивалентна ца. В си­
лу (8) о ~ инвариантная мера, а из (4) следует, что Т эргодичен на Q«, 
отсюда вытекает утверждение б) теоремы 1.

Теоремы 2 и 3 доказываются сходными методами, некоторое отличие 
лишь состоит в формулировке и доказательстве леммы, аналогичной лем­
ме 1.

В заключение автор считает своим приятным долгом поблагодарить 
Я. Г. Синая за постановку задач и полезные консультации.
Московский государственный университет Поступило
им. М. В. Ломоносова 5 XII 1973
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