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Исследование задачи о минимуме функционала I (и) на некотором мно­
жестве М облегчается, если известен функционал Цр), определенный на 
некотором множестве N и такой, что

sup 7(р) = inf 1(и).
p^N ueM

Функционал J (р) привлекается, например, для построения оценок по­
грешности приближенного решения (*).

Особенно эффективно использование функционала 7 (р) в тех случаях,, 
когда ищется не минимизирующий элемент, а минимальное значение 1а 
функционала 7(и). Вычисление значений 7(ге) и 7(р) на любых элементах 
и^М и p^N дает оценку 70 сверху и снизу

7(р)^70С7(ге). ,

Если для некоторого и можно подобрать р так, чтобы 7(ге) и 7(р) были 
близки, то 70«7(ге), причем ошибка не превышает 7(и)—7(р).

В работе указан способ построения функционала 7(р) по функционалу 
7(h) вида

I=Е (иа)—I (иа), (1)

Е (иа) = J U(x(,ua, dua/dxi)dx, dx=dxl.. .dxn, (2)'
V

I(ua) = JFaua dx + J faU^do-, (3)
V 8

здесь V — некоторая область в re-мерном пространстве переменных х1,. 
иа(х() — дифференцируемые функции х\ латинские индексы пробегают зна­
чения 1,..., ге, греческие — 1,..., тп, функция U выпукла и дифферен­
цируема по переменным иа и диа!дх', Fa — заданные в V функции х\ гипер­
поверхность S — часть границы 3V области V, — функции, заданные на S, 
do — элемент поверхности S.

Минимум функционала 7 ищется на функциях иа, принимающих на по­
верхности Z=dV—S заданные значения

геа=ср“ на S. (4)

В случаях, когда Е — функционал Дирихле или функционал геометри­
чески линейной теории упругости, сформулированный ниже вариационный 
принцип переходит соответственно в принцип Томпсона и принцип Ка- 
стильяно.

Рассмотрим пространство Ни функций (ге'Ца:’), Uia(xk)} (щ®—mXre неза­
висимых функций хк) и определенный в Ни функционал Е,

Е— J U (х*, иа, U{a) dx.
V
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На множестве L<^HU, состоящем из элементов вида {и®, диа/дх*}, функцио­
нал Е совпадает с функционалом Е (п“) (2).

Введем пространство Яр функций {ра{хк), />«(%)} и обозначим через 
<р-п> билинейную форму

<ри>= J (раиа+ра{и^^х.
V

На пространстве Нр определен функционал
E’tp^ sup (<р-и) —Е), (5)

Нв

представляющий преобразование Юнга функционала Е (2).
Построим также на пространстве Нр линейный функционал Z*(p) по 

формуле
Z’(p) =<р-и^>—1(и^),

где <р-ц®> — значение билинейной формы <р-п> на множестве L,
<p-u“> = J (раи“+ра’5и“/5«,)йа:,

V

asa — какие-нибудь функции, принимающие на 2 значения (4).
Обозначим через N множество в пространстве Нр, выделяемое ограни­

чениями
<р-и'а>—Z(u'“)=O, (6)

где и’“ — произвольные функции, принимающие на S нулевые значения.
Очевидно, что значения линейного функционала Г(р) на множестве N 

не зависят от конкретного выбора функций и2®.
Рассмотрим задачу о максимуме на множестве N функционала 

7(p)=Z’(p)-£’(p). (7)

Будем считать выполненными ограничения на U, Fa, fa, фа и область V, 
при которых решения вариационных задач (1) —(4) и (6), (7) существуют 
и единственны (см. (3_6)).

Для доказательства совпадения максимального значения Jo функцио­
нала J и минимального значения 10 функционала Z,

Л=/о, (8)
потребуются следующие утверждения.

1°. Пусть По — некоторый фиксированный элемент пространства Ни, 
а р0 — максимизирующий элемент функционала

<р-и0)— Е*(р). (9)

Тогда максимизирующий элемент функционала
<р0-и>-Е (10)

на пространстве Ни есть и0.
2°. Положим ио={иоа, ди^/дх*}, ща — минимизирующий элемент функ­

ционала I (1). Тогда соответствующий элемент р0 удовлетворяет ограни­
чениям (6).

Действительно, дифференцируя (10) по направлению и в точке и0 и по­
лагая и—{иа, ди'а/дх*}, получим

<р0-и'а'>— DE(uoa, п'“)=0,

где DE(uoa, u'“) — производная функционала Е (иа) в точке иоа по направ­
лению и “. Используя уравнения Эйлера функционала (1)

DE(uoa, и'а)— Z(u'“)=O,
получим <.р0-иZ(u'“)=O,
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3°. Справедливо равенство (2) Е^ийа)+Е* (p0)=<.p(s-uaa').

4°. Дифференцируя функционал (9) в точке р0 по направлению р', 
получим

<p'-uoa>-DE'(po,p')=O. (11)
5°. Элемент р0 является максимизирующим элементом функционала J. 
Действительно, согласно 2°, p0^N. Пусть, далее, р — произвольный эле­

мент из N. Тогда р можно представить в виде р=р0+р', где
</-н'а>=0. (12)

Покажем, что J(р) г£/(р0).
J(p)^J(p0)+DJ(p0, р') =J(pls)+<p'-usa>—DE*(p0, р'). 

Используя (11) и (12), получим
J(p)^7(p0)+<p/ ■usa>—<p' -Щ)а>=7 (£())+</ •u'a>=7(po). 

Следовательно, р0 — максимизирующий элемент функционала /(р). 
Из 1°—5° вытекает равенство (8):

Jo=l* (ро) —Е* (р0) =<Ро • Usa> — I (u2a) — <Ро • Uoa> + 
+Z?(uoa) =Zo+<po-n'a>—Z(u'“) =Z0.

Замечание. 1. Определим функционал
L(p, u)=<p-n“>—E* (p)—l(ua).

Очевидны равенства
inf sup L(p, u) =inf Z=Z0, (13)

u H ua

sup inf L(p, u) — sup J=J0', (14)
Hp ua PeN

здесь inf вычисляется по всем u“, удовлетворяющим ограничениям (4). 
Таким образом, минимаксная задача (13) эквивалентна задаче о мини­

муме функционала Z, а двойственная ей (7) минимаксная задача (14) — 
задаче о максимуме функционала J.

Замечание 2. Если функции р„ непрерывны и дифференцируемы в 
замкнутой области V, то ограничения (6) можно переписать в виде 

дра*/дх*-ра+Га=0, Ра-щ\8=/а‘, (15) 
здесь rii — компоненты вектора внешней нормали к S.

Замечание 3. Если функция U не зависит от то Z?* (/>)=+<» при 
ра^0. Поэтому при отыскании максимума Z следует положить ра=0. Функ­
ционал Е*(р) при ра=0 есть преобразование Юнга функционала Е по пере­
менным Uia.

Пример 1. Принцип Томпсона. Пусть область V есть внеш­
ность некоторой ограниченной области Й в трехмерном пространстве, 
Е (н) — функционал Дирихле,

р ди ди

V

Рассмотрим задачу о минимуме функционала /=Е(и) при условии
и=1 на dV=d£2, u(oo)~c1/r+c2/r2+..., r2=xix\ (16)

Величина (2л) _1Z0 имеет смысл электростатической емкости области Й. 
Известно (8),что

I, = sup ( Jpin4 da j ^jpip^x, (17)
p dv V

где sup вычисляется по всем векторным полям рг, удовлетворяющим урав­
нению

др75ж’=0. (18)

Вариационная задача (17), (18) носит название принципа Томпсона.
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Покажем, что принцип Томпсона вытекает из (7), (8). В рассматривае­
мом случае 5=0, Z(u)=O, h=dV. Согласно замечанию 3, достаточно рас­
сматривать векторные поля р‘, удовлетворяющие (18), при этом

Е’(р)=7г Jp.p'tZz.
V

Выбирая какую-нибудь функцию Ui, принимающую краевые значения 
(16), получим

Z" (Р) = J Ан
dV

Равенства (7), (8) можно переписать в форме
70 = sup ( Jp'n.do — l/2^ p^dx j, (19)

P dV V

где sup берется по векторным полям р\ удовлетворяющим (18).
Представим р' в форме pi='kp'i, др' 1дх'=§, где X — произвольное число, 

и перепишем (19) следующим образом:

/о = sup sup ( Л J p^rtida—V-'A J pi'pridx j. (20)
Р К dV V

После вычисления sup (20) примет форму принципа Томпсона.
Пример 2. Принцип Кастильяно. Рассмотрим функционалы 

геометрически линейной теории упругости (тп=п=3, поэтому дальше упо­
требляются только латинские индексы)

Е= [ U(х*, Zfj'jdx, eij=i/2(dui/dxi+duj/dxi').

Согласно замечанию 3, достаточно искать максимум функционала J на про­
странстве функций а Е* считать преобразованием Юнга функционала Е 
по переменным щ-. Однако, так как Е зависит только от симметричной 
части е« тензора Пц, Е*=+°° при р^р*. Следовательно, при отыскании 
максимума J следует положить pii=pii. При этом функционал Е' будет со­
впадать с преобразованием Юнга функционала Е по переменным е{,.

Если функции pi} непрерывны и дифференцируемы в замкнутой обла­
сти V, то выражение для J и ограничения (6) можно переписать в виде

7= J p^n^i do— J U’ (х{, piS) dx, (21)
z V

др^дх’+Е*^ в V, pi}n}=f на 5; (22)
здесь 77*(ж‘, Ру) — преобразование Юнга функции U(x\ е«) по перемен­
ным е„. Вариационный принцип (21), (22) известен как принцип Ка­
стильяно [’].

Замечание 4. Обычная формулировка этого принципа (21), (22) зна­
чительно уже формулировки (6), (7), так как предполагает непрерывность 
и дифференцируемость функций pi}. В действительности максимум J можно 
рассматривать на любых суммируемых функциях р'1 (их значения на мно­
жествах меры нуль, в частности на S и S, не определены).
Московский государственный университет Поступило
им. М. В. Ломоносова 31 VII 1973
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