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Риссовским ядром линейного оператора А, действующего в векторном 
пространстве X (вещественном или комплексном), называется множество

оо

Ж(А) = 52(А"), где 52(А") —область значений оператора Ап (*).  Пусть 
0(A) — область определения оператора А, АТ (А) = (х^0 (А): Ах=0} и 
-у (А) =dim [Л3 (4) ©Л3 (А) ПЖ (А) ] (=dim [АС (А) /Л3 (А) ЛЖ (А) ]), Каждое 
подпространство AC'(A) =АС(А) ©Л3 (А) ОВД (А), дополнительное к Л3 (А) Л 
ЛЖ(А) в Л3(А), будем называть выступом нулей А на его риссовском 
ядре.

Перечислим некоторые используемые ниже факты, которые имеют ме­
сто в случае конечномерного выступа (у(А)<о°). Прежде всего на осно­
вании теоремы 1 из (2а) справедливо равенство А (<25 (А) ЛЖ(А)) =Ж(А). 
Далее, если X — топологическое векторное пространство, А — относитель­
но открытое линейное отображение и 52(A) замкнуто, то Ж (А) замкнуто, 
ибо замкнуты 52 (А"), п=1, 2,... (см. (“), следствие из теоремы 3); в 
частности, Ж(А) замкнуто, если X — банахово пространство и А — линей­
ный замкнутый оператор с замкнутой областью значений.

Все дальнейшие рассмотрения будут относиться к этому последнему 
случаю. Тем самым появляется возможность ввести широко используемый 
в данной статье оператор А (ограниченный, однородный, но вообще гово­
ря нелинейный), определение которого дано в (2в).

Пусть L(X) — пространство всех линейных ограниченных операторов, 
отображающих X в себя, ЬА(Х) — подпространство в L(X), состоящее из 
всевозможных операторов В, коммутирующих с А (т. е. таких, что ВА — 
<=АВ). Тогда при достаточно малых В^ЬА(Х) имеет место включение 
Ж(А) <=Ж(А+5) (его доказательство опирается на отмеченное выше ра­
венство А (0 (А) ЛЖ(А)) =£Dt (А), и сходно с доказательством пункта 7) 
теоремы 1 в (2г)).

Нашей задачей является исследование возмущенных операторов A+S 
при условии, что В пробегает некоторую часть LA (X). Смотря по тому, ка­
кая часть ЬА(Х) выделена, мы приходим к той или другой теореме об ин­
вариантных свойствах оператора А. Прежде всего рассмотрим случай ма­
лых В.

со

Пусть 91(A) = U Л°(АП) и 5?! (А) — линейное множество, дополнительное
(в алгебраическом смысле) к 91(A) Л52 (А) в 91(A). Если у(А)<<®> то 
9lj(А) является конечномерным пространством. Считая f(A)<o°, рассмот­
рим прямую сумму 5?(A)®9li(A)=5?i(A) и обозначим через ПА порож­
денный ею оператор проектирования 521(A) на 52(A). Поскольку 52(A) и 
911(A) замкнуты, оператор Пл непрерывен. Введем теперь ряд 

(1)
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где 5е5А(Х). Члены этого ряда, во всяком случае, имеют смысл на 91 (-4), 
и ряд сходится, если ||5||< (СА||ПА||)-1, где СА — положительное число, 
участвующее в определении оператора А (||4у||ССА||у|| для каждого у<= 
е^?(4), см. (2в)). Таким образом, W (В) можно рассматривать как опера- 
тор, определенный на 51(4), если ||5||<(СА||ПА||)_1; при этом 9l(W(Bi))c: 
<=3t(A).

Рассмотрим далее оператор А+ИаВ с областью определения S>(A+ 
+ПА5) = (x^S> (А): Bx<^9h(A)}. Можно доказать, что при достаточно ма­
лых В

N(A+TIaB) =S(9i(W(B)\NlA,)), (2)

где S (Е) обозначает линейную оболочку множества Е.
Если оператор А, входящий в выражение для W(B), выбран так, что 

•его сужение па множество 512(4) =51 (4) Л 5?(А) ©51 (4) П2Л(4) линейно и 
А (х1+х2)=Ах1+Ахг для любых #^51(4) ПЗН(4) и x2^5l2(4) (указанный 
выбор оператора А всегда осуществим), то при этих условиях формула 
(2) может быть записана в виде

Л’(4+ПА5)=5’(^(Ж(5) Ua)№>))®^(Ж(5) |^(А>). (3)

Теорема 1. Пусть X — банахово пространство и А — линейный замк­
нутый оператор, действующий в X. Если 5?(4) замкнуто и 7(4)<<», то 
для достаточно малых В<^ЬА(Х) имеет место неравенство у (4+5) ^7 (4).

Доказательство опирается на формулу (3). С ее помощью, при­
нимая во внимание очевидное включение АС (А+В) <=АС (А+ПаВ) , а также 
тот факт, что при достаточно малых В^ЕА(Х) имеют место соотношения
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2?(5?(1У1(5)ЬПА)п;Ю(А)))=Л’(4+5)П551(4),а1т^(^(5)|л.-(А))=7(4), 

заключаем, что размерность выступа нулей А+В на 551(4) не превышает
*у(4). Так как 551(4) >=2)1 (4+5), то тем более не превысит у (4) и размер­
ность выступа АС' (А+В) нулей А+В на 551(4+5), т. е. у (4+5)С7(А).

Пусть 9* * (А) и (2(A) — множества всех операторов из Ь(Х), которые 
проектируют X соответственно на АС (А) или на 91 (4). Нашей дальней­
шей задачей является исследование возмущенных операторов 4+5 при 
условии, что ^(4) или (2(A) не пусто. Основным средством для этого 
■служат ряды

оо со

Т(В) = £(-1)*(АВ)", U(B)=^ (-!)”(AQAB)n,
п=0 п=0

где Qa означает какой-либо элемент множества Q, (4). Легко видеть, что 
члены ряда U(В) определены на всем X для произвольных B^L(X) и 
Qa^(2(A). Что касается членов ряда Т(В), то, как и в случае ряда W(В), 
мы будем считать, что B^LA(X) и S) ((АВ)п)—31(A), тг=О, 1,... Ряд 
Т(В) сходится, если ||5||<СА-1, а ряд U(B\), если ||5||<(СА||(?А||)Та­
ким образом, для указанных 5 области определения операторов Т (В) и 
U (В) будут соответственно 51(4) и X.

Если 9Р(А)9=ф, то оператор А можно сделать линейным ограниченным, 
•определив его равенством А = (41 й>(А)ПоЛг(Рл)) где РА — любой оператор 
из 9>(А).

Если (2(А)=+ф, то существует такое <?Аеб?(4), что <?А(9?1(4)) = {0}. 
В этом можно убедиться следующим образом. Пусть QA — фиксированный 
оператор из (2(A), г,,..., хп — базис в 5lt(4) и ft,..., fn — функционалы 
из X*, биортогональные к xt,...,xn и обращающиеся в нуль на 9i(4).



pw’’ WF 1 *
Тогда требуемый оператор QA запишется формулой Q Ax=Q А(х—£fi(x)xi) 

для каждого х^Х.
Теорема 2. Пусть X — банахово пространство и А - линейный замк­

нутый оператор, действующий в X. Если 9i(A) замкнуто, ,у(Л)<<» и 
то для достаточно малых B<=LA(X) множество &(А+В) 

замкнуто. При этом, если &(А)+=ф (соответственно С?(Л)+0), то 3(А + 
+В)+ф (соответственно £?(Л+В)=0).

Доказательство проводится различно в зависимости от того, какое из 
множеств 3(A) или &(А) не является пустым. Наметим вкратце план 
доказательства в каждом из этих случаев (отмечаемых ниже цифрами I 
и II).

I. 1) 3?(А+В) замкнуто. Пусть А= (Л|^(а)пХ(рл))-1, где РАе^(Л). 
Тогда, рассуждая как при доказательстве пункта 2 теоремы 1 в (2в), полу­
чим для достаточно малых В^ВА(Х) равенство

Л9(Л+В)ПЗЙ(Л)=5г(7’(В) I X(A)n5R(A)) • (4)
Пусть Pa'<^L(N(A) )~ оператор проектирования АР (А) на АР(А)П 

ЛЭД(Л) и РА"=Р АР. Тогда Р"А+В=Т (В) РА" бу дет в силу (4) оператором 
проектирования X на ЛДЛ+В) (Ж(Л), причем АР" (Ра+в)=АР(Ра)® 
®АР(Р'а). Очевидно, 91(А+В) = (А+В) (АР(Р“ал.в)Р\3>(А)) = (А+В) • 

■ (Л9(Ра)Л0(Л))« (Л+В) (N(РА')). Ввиду конечномерности последнего 
«слагаемого, достаточно доказать замкнутость множества (Л+В) (АР(Ра)(\ 

’Л^'(Л)). Это можно сделать, установив, что отображение 
(Л+В) |л,(ра)п®(а) относительно открыто.

2) 3(А+В)=ф. 2)?(Л+В) замкнуто, ибо замкнуто 3.(Л+В) и %(Л+ 
+В)<оо (при малых В). Имея оператор Вл+в, построим оператор Р.А+Ве 
^В(Х), проектирующий X на Л9(Л+В)П2Л(Л) и такой, что Л’ДЛ+В)® 
® Л9 (Ра) ^Л9 (Ра+в) (это возможно в силу конечности 7 (Л +В) и дизъюнкт­
ное™ Л’(Ра) с Л°(Л+В). Пусть, далее, PA±B^L(X) —такой оператор про­
ектирования X на Л9'(Л+В), что ЛДЛ+В)П9ЭТ(Л+В)сЛ’(Ра+в). Тогда 
Р а+в=Р а+в+Р'а+в^З (А+В), причем Л9 (РА) ^АР (Ра+в) .

II. 1) Л? (Л+В) замкнуто. Пусть QA выбран так, что QА (9lt (Л)) = {0}; 
тогда, очевидно, <?а(Э1(Л))<=й(Л). Рассматривая далее отображение V= 
=C)a|«(a+b), показываем, используя ряд U(В), что dimX(V)<°o, 3?(У) = 
=5? (Л) и что V относительно открыто. Отсюда, на основании теоремы 1 
из (2б), вытекает замкнутость V и, тем самым (принимая во внимание не­
прерывность V), замкнутость 3) (И) =91 (Л+В).

2) £(Л+В)=+0.
Представим (Л+В) в виде Л’(И) ®5?'(Л+В), где 91'(Л+В) замкнуто. 

Пусть У1=У| я’(А+в) и <2а+в=И1_1(?л. Очевидно <?А+веВ(Х), ^(Са+в)33 
=>AP(V) и Qa+b проектирует X на 3'(А+В). Пусть, далее, Q”a+b^L(X) 
проектирует X на АР(V) и Л9(<2л+в)^/(Л+В). Тогда Qa+b=Qa+b+Qa+b^ 

(А+В), причем Л9 (QA+B) <=-АР (QA).
Теоремы 1 и 2 носят локальный характер, ибо все возмущающие опе­

раторы ВеВа(Х), для которых 7(Л+В)<у(Л) — в теореме 1, и y(A+B)*Z  
С'у(Л), 3(А+В) =3(А+В), 3(А+В){)^(А+В)+ф — в теореме 2, берут­
ся малыми.

Далее мы рассмотрим также большие возмущения оператора Л, позво­
ляя В пробегать произвольную по размерам часть LA (X). Пусть 83 — не­
которое подпространство в ЬА(Х), состоящее из коммутирующих друг с 
другом операторов. Выделим в 83 множество $ (соответственно О) таких 
операторов В, что: 1) 9i(A+B) замкнуто; 2) 7(Л+В)<<»; 3) 3(А+В) + 
=Аф (соответственно <3(А+В)=+ф). В силу теорем 1 и 2 множества $ и О 
открыты в 83 и, следовательно, каждое из них распадается на связные ком­
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поненты. Пусть G — какая-либо из этих компонент и Г={ВеС: f (4+5)=А 
^0}.

Имеет место следующая теорема, характеризующая строение Г в G.
Теорема 3. Каково бы ни было 8, множество Г замкнуто в G. Если 

8 содержит биективный оператор, то Г нигде не плотно в G-, если 8 — одно- 
мерное пространство, порожденное биективным оператором, то Г — изоли­
рованное множество в G.

Доказательство опирается на теоремы 1 и 2 и на тот факт, что в 
случае биективного оператора В^Ьд(Х') имеет место включение 2У(И+ 
+В)<=£й(Л).

Нетрудно показать на примерах, что если одномерное пространство 8 
порождено не биективным отображением B^LA(X), то множество Г мо­
жет не быть изолированным и даже нигде не плотным в своей компоненте.

Московский институт инженеров Поступило
железнодорожного транспорта 1 X 1973
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