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Рассматриваются автоматные системы управления (’) для одного 
класса управляемых случайных процессов.

1. Пусть заданы измеримое фазовое пространство (X, и простран­
ство управлений У. Управляемый процесс будем называть однородным 
процессом с независимыми значениями (о.п.н.з.), если он характеризу­
ется системой условных вероятностей

n(B\y)=P{£t+1e=B\y(t)=y}, В<=&.

Мы будем рассматривать случай, когда Х=Х(1)ХХ<2)Х ... XX<W), У= 
=У(1,ХУ<2)Х ... ХУ(ЛГ) и для каждого множества В=В<ОХВ(2)Х ...

...XB<2V), B<°czX(4) и ц(В|г/)= П (-®(i) I У) • Значения процесса и управ- 
1=1

ляющей переменной являются при этом векторными величинами одина- 
ковой размерности N: • • •, У (0 = (j/(O(0, • • •, У(лг) (0)•
В дальнейшем будем считать все множества Х(г) состоящими из двух 
элементов * {0, 1}, а множества У(1) — конечными.

* Приводимые далее результаты можно распространить и на случай произволь­
ных ограниченных множеств, если значения pl,-, Bi] каждой компоненты процес­
са подавать сначала на генератор случайных чисел, выдающий число 0 или 1 с вероят­
ностями (В4-Ж4)/(В—Л;) И (x{-Ai) / (B—Ai) СООТВвТСТВвННО.

2. Примем систему управления в виде прямого произведения N оди­
наковых автоматов Ь=АцХ ... XAN. В моменты времени t=l, 2,... авто­
мат At выбирает значение i-й компоненты управляющего вектора y(.t), 
а на его вход поступает величина . При таком способе организации 
системы L она является децентрализованной.

Автоматы A, ....Ajv мы будем брать из класса С, к которому отне­
сем автоматы Dx,„ (2), „ (3), Ук, „ (4) (и означает число выходных
сигналов, ап — глубину памяти автомата). Если задана последователь­
ность {7>п}, «=1, 2,..., управляющих систем такая, что Еп=А,пХ... 
... XANn, причем автоматы А" принадлежат классу С и образуют после­
довательность, асимптотически оптимальную в любой стационарной сре­
де (5), то мы будем называть {Ln} последовательностью типа С.

3. Управляющие системы Ln являются «обучаемыми системами» и
для некоторых целей управления — «адаптивными системами» (‘). Ста­
вится задача выяснить, какие цели достигаются ими при управлении про­
цессами охарактеризованного класса. Совокупность обучаемой си­
стемы и управляемого процесса описывается марковской цепью Мп, со­
стояниями которой являются наборы s^Sn состояний всех автоматов. 
Множество Sn разбивается на непересекающиеся подмножества Skn та­
кие, что из s(t)^Shn следует y(t) =yh.
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Для каждого значения управляющего вектора введем его финальную 

вероятность S где лМп(?) — финальная вероятность
seSsn

состояния s в цепи Мп.
Определим предельный средний выигрыш автомата А{ как

«Г = V, л(у, м)/Ду),

где /i(y)=£'(g<i)|y) — математическое ожидание i-й компоненты процесса 
при значении у управляющей величины, и будем считать, что целью 
управления является максимизация некоторой функции (в дальнейшем 
мы всюду будем считать ее линейной) от средних выигрышей всех авто­

матов F(w„)=F(jPn>,..., iz?„N> ).

В качестве такой функции может быть взята, например, сумма ком- 
.V

понент F(wn) = , минимальная из компонент F(wn) = min w™ и
i=1

т. д. Обозначим

F = max F[/, (у),..., /д- (у) ]
ysY

и назовем систему L оптимальной, если F(w)=F, и е-оптимальной, если 
F(w)^F—e.

4. Выделим в каждом из подмножеств Shn состояние <р*,  которому со­
ответствуют состояния максимальной глубины всех автоматов. Процесс 
М„, рассматриваемый лишь в моменты попадания в множество Ф = {ф1, 
<р2, образует новую цепь Маркова G„, финальное распределение ко­
торой обозначим {nGn}.

Лемма 1. Пусть задана последовательность {Ln} управляющих си­
стем типа С. Тогда для любого о.п.н.з. |( существуют константы cii>0, 
с2>0 такие, что при всех пик

Лемма 1 сводит исходную задачу к изучению последовательности мар­
ковских цепей {Gn}, в которой, в отличие от последовательности {#„}. 
число состояний не растет с увеличением п.

Обозначим Т (а, АТ) среднее время до смены действия автоматом АТ 
в стационарной среде с математическим ожиданием выигрыша а. Для 
переходных вероятностей рмвп цепи Gn удается получить следующую 
оценку.

Лемма 2. Если величины ук—Y и yi<=Y отличаются компонентами 
ii,..., ig, го существуют константы с3>0, с4>0 такие, что при всех п

q N

г=1 г=1

5. Будем ставить в соответствие каждому процессу ориентирован­
ный граф V следующим образом: 1) множество вершин V изоморфно 
множеству У, 2) из к в I существует дуга, если у>. и yi отличаются толь­
ко одной (v-й) компонентой и fv(yk) = min /ДгД).

Теорема 1. Пусть задана последовательность {£„} обучаемых си­
стем типа С. Если о.п.н.з. |4 таков, что множество U<=TY, на котором до-
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любой вершины графа;

стигается max min/Ду), достижимо из любой вершины V, то для целе- 

вой функции «максимум минимальной компоненты» lim F(wn) =F.
П->оо

Теорема означает, что для любого е>0 существует и‘(е) такое, что, 
если и>п(е), система L,, является е-оптимальной.

Пример 1. N=2, У(1, = {1,2}, F2>={1,2,3}; /Д1, 1) =Д(1,3) =
=А(2, 1)=/,(2, 2) =0,9; /2(2, 3) =0,5; А(2, 3) =0,4; /2(1, 1) =
=А(2, 1)=/2(2, 2)=0,3; /2(1, 2)=/2(1, 3) =0,2; /Д1, 2)=0,1; граф V
для рассматриваемого процесса показан на рис. 1. Множество U состоит 
из вершины (2, 3), которая достижима из 
F=max min А (у) =0,4. В силу теоремы 1 по-

V i

лучаем, что lim F(w„) =0,4 для любой по-
71->0О 

следовательности управляющих систем ти­
па С.

6. Рассмотрим теперь процессы, у кото­
рых при любом управлении математическое 
ожидание всех компонент одинаково:

А(Ю=А(Ю = ---=МЮ v^y- (1)

Теорема 2. Пусть задана последовательность управляющих систем 
типа С и о.п.н.з.^, для которого выполняется (1).

Тогда для любой линейной целевой функции F, не убывающей по 
всем аргументам, lim F(wn) =F.

Пример 2. N, У(1>, У<2> — как в примере 1, А(1, 1)=/2(1, 1)=0,5; 
А(1, 2)=/2(1, 2)=0,6; А(1, 3)=/2(1, 3)=0,3; /1(2, 1)=/2(2, 1) =0,7;
/1(2,2)=/г(2,2)=0,4; /,(2, 3)=/Д2, 3)=0,6.

Если задана целевая функция F(w) =w{l'l+w(2\ то F=l,4 и в сил}’ 
теоремы 2 lim F(wn) =1,4.

7. Взаимодействие 7 и |i можно также интерпретировать как «игру 
автоматов» (5), при этом каждому значению управляющего вектора у со­
ответствует некоторая партия игры, величина /Ду) имеет смысл средне­
го выигрыша г-го участника в партии у, л (у, п) — финальная вероятность 
партии у и т. д.

Все результаты, полученные для управления векторными о.п.н.з., мо­
гут быть переформулированы в терминах игр автоматов. Мы, однако, но 
будем делать этого, а дадим только игровую интерпретацию приведенных 
выше примеров.

Оба примера соответствуют играм двух автоматов, первый из которых 
имеет два, а второй — три действия. Из теоремы 1 следует, что если в 
игре участвуют автоматы из последовательностей {D2: л} и {Z>3, 
[К2, „} и {К3, „}, то финальная вероятность партии (2, 3) стремится к 
единице: л((2,3), п) ->-1, При рассмотрении игр автоматов, как
правило, выделяют «ситуации равновесия» (или «партии Нэша») (в), 
в которых ни одному из участников невыгодно менять стратегию, если 
стратегии остальных игроков не меняются. Множество ситуаций равно­
весия, вообще говоря, не совпадает с фигурирующим в теореме 1 мно­
жеством U «максминных» партий; так, в примере 1 существует единст­
венная ситуация равновесия (1, 1), однако автоматы разыгрывают не 
ее, а максминную партию (2, 3). Лишь при некоторых специальных ус­
ловиях эти два множества совпадают и тогда теорема 1 дает достаточное 
условие разыгрывания автоматами ситуации равновесия.

В пгре, соответствующей примеру 2, из теоремы 2 вытекает, что 
lim л ((2, 1), п) =1, т. е. при увеличении глубины памяти начинает

П-*оо
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разыгрываться исключительно партия (2, 1), в которой выигрыш обоих 
автоматов максимален.

Автор выражает глубокую признательность В. Г. Сраговичу за по­
становку задачи и большую помощь в работе.

Московский физико-технический институт 
Долгопрудный Московской обл.
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