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МАТЕМАТИКА

1°. Всюду далее в работе мы используем установившуюся терминоло­
гию и обозначения теории р-мерных целых кривых (р>2), созданной 
в (|_3) (см. также (4_6)). Как и в мероморфном случае, мы интересуемся, 
до какой степени можно ослабить требование аналитичности координат 
целой кривой, чтобы при этом сохранялись основные положения теории 
роста и распределения значений (см. (’■ ’• 10)). По-видимому, наиболее 
естественным подходом к решению этой проблемы является привлечение 
теории квазиконформных отображений М. А. Лаврентьева (12) (см. так­
же (13)).

Определение * (см. (7)). Зависящий от комплексного параметра z. 
р-мерный вектор

G(z) = {gi(z), g2(z),...,gp(z)}, р>2,

будем называть р-мерной квазиконформной (^-квазикон­
формной) целой кривой, если ее координаты gn(z) допускают пред­
ставление

g„(z)=A„(x(z)), п=1, 2, 3,...,р,

где w=n (z) — квазиконформное ((^-квазиконформное) отображение всей 
z-плоскости на всю ^-плоскость (х(°°) —°°), a hn(w) — целые функции 
такие, что

Н(и?) = {/11(гр), hz(w),..., hp(uT)}

— обычная р-мерная целая кривая в ^-плоскости.
Таким образом, 1-квазиконформная целая кривая является обычной 

целой кривой. Определим теперь характеристику роста квазиконформной 
целой кривой. Рассмотрим р-мерный вектор

а (а) =а (а,, а2,..., аР) = {е"* ”, e~ia\..., e~ia₽},

где 0=^ап^2л, п=1, 2, 3, ...,р. Пусть n(r, a(a),G) обозначает число кор­
ней (с учетом кратности) скалярного произведения

р
(G(z) • a(a)) = yij g»(z) ■ eiaK, 

fe=i
попавших в круг {z : |z|Cr} и (см. (9,10))

N (г, a (a), G) = J n(t, а (а), G)dln t.
1

Характеристикой квазиконформной ((^-квазиконформной) целой кри­
вой G(z) назовем величину

* Близкое определение внутреннего отображения было дано в (8).
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С помощью этой характеристики естественным образом вводим порядок 
р и нижний порядок X для G(z). Можно показать, что для целых кривых 
характеристика (1) отличается от ее неванлинновской характерстики 
(см., например, (5), стр. 538) на несущественное слагаемое.

Среднее отклонение пг(г, a, G) квазиконформной целой кривой от век­
тора а определяем так же, как и в классическом случае (см. (*)),  а ее мак­
симальное отклонение от вектора а определим так (см. (5)):

* Система векторов А называется допустимой, если любые р различных векто­
ров этой системы линейно независимы.

L(r, a, G) = max In
|z|=r

IIG(z) ll-llall 
I (G(z) -a) I

Дефектом квазиконформной целой кривой G(z) относительно вектора а
назовем величину

в, „х "i(r,a,G)
z(r.G) .

а величиной ее отклонения от вектора а назовем величину

Р (a, G) = lim
Т->оо

L(r, a, G)
T(r,G)

Пусть QA(G)={aeM: fj(a, G) >0} — множество положительных отклоне­
ний G(z) относительно фиксированной допустимой системы векторов * А.

2°. Основные результаты.
Теорема 1. Если Q-квазиконформная целая кривая G(z) имеет конеч­

ный нижний порядок X, то:
а) множество Од (G) не более чем счетно',
б) справедлива оценка

аеА

где C(Q, р, л) — положительная постоянная, зависящая лишь от коэффи­
циента квазиконформности Q, размерности р и нижнего порядка X.

Теорема 2. Для любого Q, 1^Q<°°, существует допустимая система 
векторов А и Q-квазиконформная целая кривая G(z) бесконечного нижне­
го порядка, для которой множество (G) не является счетным.

3°. Обобщения. Пусть f(z, w) — целая функция двух комплексных 
переменных, причем /(z, w) ^const для каждого фиксированного w. Поло­
жим для нее (w фиксировано)

1 2"
Т(п,г2, f) = — f ln>(ne<e,T2, /)d0,

2л J
О

771 (Г, W, f)
1 2f" Tf(re19,1+lwl)

2л J I/(re'9, tz?) I
0

dQ,

L(r, w, f)~ max In
|z|=r

M (z, 1+1 ш|) 
l/(z, w?) I 

где
lnM(z, 7?)=maxln |/(z, m)

|wl = R
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Определение.
любого к^1

Если /(z,

Дефектом /(г, 
те льн о w назовем

Будем говорить, что функция /(z, w)^M, если для

111П ~Т( 4 П =С <О°-г-» Г (г, 1,/)
то ее характеристику роста определим так:

Т (r,f) =Т (г, 1, /).

w) и величиной ее отклонения относи-
соответственно величины

я/ г ™(r,w,f) 0/ Л ,. Б(г, w,f)

Естественным образом определяем множество дефектных зна­
чений и множество ее положительных отклонений:

D(f) = {w: б(и>, /)>0}, Q(/) = {u>: £(гг, /)>0}.

Теорема 3. Если f(z, w)^M и имеет конечный нижний порядок Л, 
то для любого фиксированного w

6(w,/)«£l,
л V sin лХ, 
лЛ.,

0^Х<0,5,
XSs=0,5,

(2)

и плоская мера множества Q (/) равна нулю.
Существуют примеры функций из класса М, для которых в (2) дости­

гается равенство для счетного множества значений w. Вероятно, для целой 
функции из класса М множество Й(/) всегда имеет нулевую емкость. 
Оценка для [3(гр, /) представляет собой некоторый аналог известной ги­
потезы Пэйли (14), которая была доказана Н. В. Говоровым (“). Даль­
нейшие обобщения см. в (15). Результаты теоремы 3 естественным обра­
зом распространяются на целые функции п, п>2, комплексных перемен­
ных.

4°. Об исключительности множества Q(G). Выберем две 
р р

фиксированные квадратные матрицы a={anJ}n j=1 Hd={dn,3}n,3=l; при этом 
будем считать, что det а=£0. Этот набор будем далее обозначать A (a, d). 
Положим для каждого w={jz;„}n=i

Пусть Е — произвольное ограниченное замкнутое множество из Ср и 

Е (a, d) ={w= (u?„) Li ■ b— (£») k=l^E}.

Обозначим через En(a, d) проекцию множества E(a, d) на координат­
ную плоскость wn и назовем р-емкостыо множества Е величину

Ср(£')= Sup min Сар2 Еп(а, d),
А(а, d) i^n^p

где Sup берется по всевозможным наборам A (a, d). Для произвольной 
р-мерной целой кривой G(z) внутренняя p-емкость множества 0(G) равна 
нулю без дополнительного предположения о принадлежности векторов 
фиксированной допустимой системе. Множество Е (a, d) можно рассматри­
вать как сечение множества Е р-мерной аналитической плоскостью.
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Представляет интерес исследовать структуру сечений множества Q(G) 
^-мерными аналитическими плоскостями 1, коэффициенты кото­
рых принадлежат некоторой фиксированной допустимой системе векторов.

Харьковский государственный университет 
им. А. М. Горького

Поступило
18 XII 1973
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